- •1.Материальная точка. Абсолютно твёрдое тело. Система отсчёта.
- •2.Кинематика точки. Путь. Перемещение. Скорость и ускорение. Их проекции на координатные оси. Вычисление пройденного пути. Средние значения.
- •3.Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения.
- •4.Кинематика твёрдого тела. Вращение вокруг неподвижной оси. Угловые скорость и ускорения. Связь между угловыми и линейными скоростями и ускорениями.
- •5.Границы применимости ньютоновской механики. Первый закон Ньютона.
- •6.Масса и импульс. Второй закон Ньютона как уравнение движения.
- •7.Третий закон Ньютона. Центр масс. Уравнение движения центра масс.
- •8.Сила тяжести и вес тела. Упругие силы. Силы трения.
- •9.Законы сохранения. Силы внутренние и внешние. Замкнутая система. Сохраняющиеся величины. Связь законов сохранения со свойствами пространства и времени.
- •10.Закон сохранения импульса. Реактивное движение. Движение тела с переменной массой.
- •11.Работа переменной силы и мощность. Кинетическая энергия частицы.
- •12.Потенциальная энергия. Виды потенциальной энергии. Связь силы и потенциальной энергии.
- •13.Полная механическая энергия частицы. Консервативные и диссипативные системы. Закон сохранения энергии.
- •14.Закон всемирного тяготения. Гравитационное поле и его характеристики. Потенциал поля. Связь между потенциалом и напряжённостью поля. Космические скорости.
- •15.Вывод основного закона динамики вращательного движения.
- •16.Момент инерции тела относительно оси. Момент инерции кольца, диска.
- •17.Момент инерции шара. Теорема Штейнера.
- •18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
- •19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
- •20.Работа силы при вращении твердого тела. Кинетическая энергия вращающегося тела.
- •21.Неинерциальные системы отсчёта. Силы инерции. Принцип эквивалентности. Уравнение движения в неинерциальных системах отсчёта.
- •22.Принцип относительности Галилея. Преобразования Галилея. Классическая теорема сложения скоростей. Инвариантность законов Ньютона в инерциальных системах отсчёта.
- •23.Постулаты Эйнштейна для сто. Преобразования Лоренца.
- •24.Относительность понятия одновременности. Относительность длин и промежутков времени. Интервал между событиями. Его инвариантность. Причинность.
- •25.Релятивистский закон преобразования скорости. Релятивистский импульс.
- •26.Релятивистское уравнение динамики. Релятивистское выражение для кинетической и полной энергии. Взаимосвязь массы и энергии.
- •27.Уравнение свободных колебаний без трения: пружинный маятник. Его решения. Вектор-амплитуда.
- •28.Физические и математические маятники.
- •29.Гармонический осциллятор. Энергия гармонического осциллятора. Сложение одинаково направленных и взаимно перпендикулярных колебаний.
- •30.Уравнение затухающих колебаний и его решение. Коэффициент затухания. Логарифмический декремент затухания. Добротность.
- •31. Уравнение вынужденных колебаний и его решение. Векторная диаграмма. Амплитуда и фаза вынужденных колебаний.
- •32.Резонанс. Резонансные кривые для амплитуды и фазы вынужденных колебаний.
- •33.Гидродинамика. Линии тока. Уравнение Бернулли.
- •34.Ламинарное и турбулентное течение жидкости. Сила вязкого трения в жидкости. Число Рейнольдса. Формула Пуазейля.
- •35.Термодинамический метод исследования. Термодинамические параметры. Равновесные состояния и процессы, их изображение на термодинамических диаграммах.
- •36.Вывод уравнения молекулярно-кинетической теории идеальных газов для давления и его сравнения с уравнением Клайперона-Менделеева.
- •37.Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул.
- •38.Работа газа при изменении его объёма. Количество теплоты. Теплоёмкость. Первое начало термодинамики.
- •39.Приминение первого начала термодинамики к изопроцессам и адиабатному процессу идеального газа. Зависимость теплоёмкости идеального газа от вида процесса.
- •40.Работа, совершаемая идеальным газом в различных процессах.
- •41.Адиабатный процесс. Уравнение Пуассона для адиабатного процесса.
- •42.Политропический процесс. Теплоёмкость газа в политропическом процессе.
- •44.Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям.
- •45.Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •46.Среднее число столкновений и средняя длина свободного пробега молекул. Их связь с концентрацией и размером молекул.
- •47. Понятие о разрежённых газах. Вакуум и методы его получения.
- •48.Обратимые и необратимые процессы. Круговой процесс (цикл). Тепловые двигатели и холодильные машины. Термический кпд.
- •49.Цикл Карно и его кпд для идеального газа. Второе начало термодинамики. Независимость кпд цикла Карно от рабочего вещества. Лемма Карно.
- •50.Энтропия идеального газа при обратимых и необратимых процессах.
- •51.Статистическое толкование энтропии.
- •52.Термодинамические потенциалы. Направление течения процессов в неравновесных состояниях.
- •53.Термодинамика необратимых процессов. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности и внутреннего трения.
- •54.Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса.
- •55.Изотермы Ван-дер-Ваальса и их сопоставление с реальными изотермами. Критическая температура. Внутренняя энергия газа Ван-дер-Ваальса.
- •56.Тепловые явления при низких температурах. Третье начало термодинамики.
- •57.Понятие фазы. Фазовые переходы 1 и 2 рода. Фазовые диаграммы. Тройная точка.
18.Момент импульса. Уравнение моментов. Закон сохранения момента импульса.
Моментом импульса т. наз. величина физически равная векторному произведению радиуса вектора т. на ее импульс L=[r*p] p=mV L=[r*mV] L=Iw lw –напр. в одну сторону.
Момент импульса характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — скалярная величина.
Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.
Момент импульса замкнутой системы сохраняется.
Момент
импульса
частицы
относительно некоторого начала отсчёта
определяется векторным произведением
ее радиус-вектора и импульса:
где
—
радиус-вектор частицы относительно
выбранного неподвижного в данной системе
отсчета начала отсчёта,
—
импульс частицы.
В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.
Уравнение моментов. Найдем скорость изменения момента импульса тела.
dL/dt = ([dri/dt·pi] + [ri·dpi/dt]). (7.4)
Первое слагаемое в выражении (7.4) равняется нулю, поскольку производная от радиуса по времени, являющаяся скоростью iой части тела, параллельна ее импульсу. Второе слагаемое преобразуем, воспользовавшись 2ым законом Ньютона:
dpi/dt = Fi + Fik*, где Fi и Fik* - соответственно сумма внешних и внутренних силы, действующие на iый элемент тела.
Подставив это выражение в (7.4), получим, что скорость изменения момента импульса равняется сумме моментов внешних Mi и внутренних Mik* сил. Причем, последний из них равен нулю. Таким образом,
dL/dt = (Mi + Mi*) = Mi = M. (7.5)
Следовательно, скорость изменения момента импульса вращающегося тела равняется суммарному моменту внешних сил, действующих на него.
Уравнение (7.5) называется уравнением вращательного движения в форме моментов (уравнением моментов).
Закон
сохранения момента импульса:
Если
на систему вращающихся вокруг оси тел
не действуют моменты внешних сил (система
в этом смысле замкнута) или внешние
моменты взаимно уравновешиваются, то
суммарный момент импульса системы
относительно оси вращения с течением
времени не изменяется.
Таким образом,
закон утверждает, что внутренние моменты
сил системы не в состоянии изменить
полный суммарный момент импульса системы
тел, а в состоянии лишь перераспределить
его. Внутри системы возможна лишь
передача момента импульса от тела к
телу.
В
аналитическом виде закон сохранения
момента импульса записывается следующим
образом: если Mвнеш = 0 , то
или
так: для начального и конечного момента
времени
19.Гироскоп. Свободные оси. Главные оси момента инерции. Регулярная прецессия.
Гироскоп — устройство, способное измерять изменение углов ориентации связанного с ним тела относительно инерциальной системы координат.
Схема простейшего механического гироскопа в карданном подвесе
Основные типы гироскопов по количеству степеней свободы:
2-степенные,
3-степенные.
Основные два типа гироскопов по принципу действия:
механические гироскопы,
оптические гироскопы.
По режиму действия гироскопы делятся на:
датчики угловой скорости,
указатели направления.
Однако одно и то же устройство может работать в разных режимах в зависимости от типа управления.
Свободная ось – ось, положение которой в пространстве остаётся неизменным при вращении вокруг неё тела в отсутствие внешних сил.
Можно доказать, что для тела любой формы и с произвольным распределением массы существуют три взаимно перпендикулярные, проходящие через центр масс тела оси, которые могут служить осями – они называются главными осями инерции тела.
Прецессия гироскопа. Прецессией называется движение по окружности конца оси гироскопа, под действием постоянно действующей малой силы.
Скорость прецессии гироскопа определяется величиной внешней силы F, точкой ее приложения, значением и направлением угловой скорости вращения диска гироскопа w и его моментом инерции I. Направление прецессии зависит от направления действующей силы и направления вращения диска.
