- •Полищук Михаил Нусимович
- •Теория автоматического управления
- •Курс лекций для студентов кафедры «Автоматы»
- •Введение
- •1 Принципы автоматического управления
- •1.1 Функциональная схема сау
- •1.1.1 Объект управления
- •1.1.2 Исполнительное устройство (привод)
- •1.1.3 Датчик обратной связи (сенсор)
- •1.1.4 Управляющее устройство
- •1.1.5 Типовая структурная схема сау
- •1.2 Примеры сау
- •1 Турбина; 2 шары; 3 золотник; 4 силовой цилиндр; 5 заслонка
- •1.3 Принципы управления
- •1.3.1 Программное управление (управление по разомкнутому циклу, без обратной связи)
- •1.3.2 Управление по возмущению (принцип Понселе)
- •1.3.3 Управление с обратной связью по ошибке
- •1.3.4 Комбинированное управление
- •1.3.5 Задача стабилизации скорости вращения электродвигателя
- •2 Анализ линейных непрерывных систем автоматического управления
- •2.1 Описание сау
- •2.1.1 Пространство состояний
- •2.1.2 Основные характеристики линейных систем
- •2.1.3 Линейная система в пространстве состояний
- •2.2 Элементарные звенья
- •2.2.1 Безынерционное звено (статическое звено, идеальный усилитель)
- •2.2.2 Идеальный интегратор
- •2.2.3 Идеальное дифференцирующее звено
- •2.2.4 Инерционное (апериодическое) звено
- •2.2.5 Колебательное звено
- •2.2.6 Другие элементарные звенья
- •2.2.7 Неустойчивые (неминимально-фазовые) звенья
- •2.3 Структура сау и структурная схема
- •2.3.1 Структурная схема электромеханической следящей системы
- •2.3.2 Структурные преобразования
- •2.3.3 Многоконтурные системы
- •2.3.4 Частотные характеристики соединения звеньев
- •2.3.5 Построение логарифмических частотных характеристик сложных систем
- •2.4 Устойчивость линейных систем
- •2.4.1 Понятие устойчивости
- •2.4.2 Алгебраические критерии устойчивости
- •2.4.3 Частотные критерии устойчивости
- •2.4.4 Запасы устойчивости
- •2.5 Точность систем автоматического управления
- •2.5.1 Точность при полиномиальных (степенных) воздействиях
- •2.5.2 Астатизм
- •2.5.3 Точность при периодических воздействиях
- •2.5.4 Фильтрация сигналов
- •2.5.5 Качество сау
- •2.6 Управляемость и наблюдаемость объектов
- •2.6.1 Управляемость объекта
- •2.6.2 Наблюдаемость объекта
- •2.6.3 Оценка управляемости и наблюдаемости объектов по их структурным схемам
- •2.6.4 Управляемость и наблюдаемость типовых динамических звеньев
- •2.7 Идентификация объектов
- •3 Синтез линейных непрерывных систем автоматического управления
- •3.1 Основные задачи синтеза регуляторов
- •3.2 Типы регуляторов и их свойства
- •3.2.1 Последовательный регулятор
- •3.2.2 Прямой параллельный регулятор
- •3.2.3 Обратный локальный регулятор
- •3.2.4 Регулятор в цепи отрицательной обратной связи
- •3.2.5 Комбинированный регулятор по уставке и ошибке
- •3.2.6 Комбинированный регулятор по возмущению и ошибке
- •3.3 Синтез систем управления методом логарифмических частотных характеристик
- •3.4 Синтез пид-регулятора
- •3.4.1 Свойства пид-регулятора
- •3.4.2 Настройка пид-регулятора
- •3.4.3 Параметрический синтез пид-регулятора
- •3.4.4 Оптимизационный синтез регулятора с помощью программного модуля Simulink Design Optimization
- •3.4.5 Графо-аналитический синтез пид-регулятора
- •3.5 Синтез модального регулятора
- •3.5.1 Синтез для случая полностью управляемого объекта с одним входом
- •3.5.2 Синтез для случая объекта, заданного передаточной функцией
- •4 Исследование дискретных систем автоматического управления
- •4.1 Импульсные системы
- •4.1.1 Математическое описание импульсных систем
- •4.1.3 Передаточная функция импульсного звена
- •4.1.4 Передаточные функции типовых импульсных звеньев
- •4.1.5 Передаточная функция импульсной системы
- •4.1.6 Передаточная функция импульсной системы управления
- •4.1.7 Устойчивость импульсных систем
- •4.1.8 Частотные характеристики импульсных систем
- •4.1.9 Критерий Найквиста для дискретных систем
- •4.1.10 Оценка качества импульсной системы управления
- •4.2 Цифровые системы
- •4.2.1 Структура цифровой системы управления
- •4.2.2 Дискретные алгоритмы управления и дискретная коррекция
- •4.2.3 Цифровые модели непрерывных систем
- •5 Исследование нелинейных сау
- •5.1 Особенности нелинейных систем
- •5.2 Метод фазового пространства
- •5.2.1 Фазовая плоскость
- •5.2.2 Виды особых точек
- •5.2.3 Поведение нелинейных систем на фазовой плоскости
- •5.2.4 Особые траектории
- •5.2.5 Скользящие процессы в релейных системах
- •5.3 Устойчивость нелинейных сау
- •5.3.1 Первый метод Ляпунова
- •5.3.2 Второй метод Ляпунова
- •5.3.3 Теорема Лурье
- •5.3.4 Критерий в.М. Попова
- •5.4 Автоколебания
- •5.4.1 Метод гармонического баланса
- •5.4.2 Критерий устойчивости в методе гармонического баланса
- •5.5 Реакция нелинейной системы на внешние воздействия
- •5.6 О выборе законов управления с учетом нелинейных факторов
- •Библиографический список
- •Оглавление
1.1.3 Датчик обратной связи (сенсор)
Датчики информации являются преобразователями параметров физических процессов в электрические сигналы. Датчики дают информацию о текущих значениях управляемых процессов информационные сигналы, осуществляют, так называемую обратную, связь.
Входом датчика обратной связи (ДОС, рис. 1.9) является выход объекта управления y(t), выходом датчика оценка выходной характеристики y(t).
Рис. 1.9. Обозначение ДОС на структурной схеме
Несовпадение y(t) и y^(t) объясняется двумя причинами: погрешностью датчика и изменением типа сигнала (например, механического перемещения в электрическое напряжение). Датчик называется идеальным, если его сигнал прямо пропорционален измеряемой величине. Все реальные датчики не являются идеальными: а) имеют ошибки и связанные с этим "паразитные" сигналы; б) имеют ограниченный диапазон измерений (зоны нечувствительности, нелинейные характеристики); в) инерционны.
Примеры датчиков
1. Датчик относительного перемещения
Измерительный потенциометр (рис. 1.10)
а б
Рис. 1.10. Датчик относительного перемещения: а – линейного, б – углового
Напряжение u, снимаемое с движка потенциометра, пропорционально перемещению подвижного элемента датчика (движка) относительно средней точки (корпуса). Движок связан с одним из тел, а корпус – с другим.
Индуктивный датчик (рис. 1.11) представляет собой дифференциальный трансформатор с двумя встречно направленными вторичными обмотками. Если сердечник расположен в середине между обмотками, суммарное напряжение их равно нулю. Если сердечник перемещается, разностное напряжение поступает на вход фазочувствительного выпрямителя.
Рис. 1.11.Индуктивный датчик относительного перемещения
2. Датчик угловой скорости – тахогенератор (рис. 1.12).
Рис. 1.12. Тахогенератор
Тахогенератор представляет собой генератор постоянного тока. ЭДС, вырабатываемая генератором, пропорциональна угловой скорости вращения ротора, механически соединяемого с телом, скорость которого необходимо измерить.
3. Датчик давления – измерительная мембрана.
Прогиб мембраны пропорционален давлению газа, действующему на ее поверхность. Мембрана – это преобразователь "давление перемещение" px (а перемещение можно затем преобразовать в электрический сигнал).
4. Датчик температуры: термистор, термопара.
Действие термистора (рис. 1.13) связано с зависимостью его электрического сопротивления от температуры, действие термопары — со свойством разнородных проводников образовывать в спае электродвижущую силу (ЭДС), зависящую от температуры спая.
Рис. 1.13. Термистор
5. Датчик механических напряжений – тензометр.
Тензометры используются для измерения малых деформаций упругих структур. Тензометрический элемент содержит тонкую проволоку на подложке, наклеенной на контролируемую конструкцию. При деформации конструкции изменяются ее геометрические размеры; при этом изменяется длина, а значит и электрическое сопротивление проволоки тензометрического элемента, и соответственно регистрируемый сигнал.
