- •1. Общие сведения о системах автоматики, телемеханики и связи
- •2. Классификация и общие характеристики элементов автоматики и телемеханики
- •6. Реле железнодорожной автоматики
- •3. Датчики
- •4. Общие сведения и классификация реле
- •5. Основные параметры реле. Эксплуатационно-технические требования к реле
- •7. Энергетические и временные параметры реле. Коэффициент возврата.
- •8. Контактная система. Виды контактов.
- •9. Режимы работы контактов. Работа при замыкании цепи и в замкнутом состоянии.
- •10. Размыкание контактов
- •13. Механическая характеристика реле
- •16. Расчет магнитодвижущей силы электромагнита реле. Построение согласованной тяговой характеристики реле.
- •14. Определение максимального магнитного потока в магнитной цепи реле.
- •15. Тяговая характеристика реле
- •17. Конструкция нейтральных реле железнодорожной автоматики и телемеханики.
- •19. Переходные процессы при выключении реле.
- •18. Переходные процессы при включении реле.
- •20. Методы изменения временных параметров реле.
- •21. Построение временных диаграмм работы реле
- •22. Поляризованные реле, их классификация и режимы работы.
- •23. Конструкция реле пл.
- •24. Комбинированное реле типа кмш. Применение комбинированного реле в устройствах ж.Д. Автоматики.
- •27. Реле с экранирующим кольцом
- •25. Временная диаграмма работы поляризованного реле
- •26. Реле переменного тока. Тяговая характеристика реле переменного тока.
- •28. Индукционные реле. Тяговые характеристики индукционного реле.
- •30. Применение индукционных реле в железнодорожной автоматике.
- •29. Векторная диаграмма сил, действующих на сектор индукционного реле.
- •31. Реле железнодорожной автоматики зарубежных фирм, особенности их конструкции.
- •32. Принцип действия магнитного усилителя
- •33. Магнитный усилитель с обратной связью. Бесконтактное магнитное реле.
- •34. Магнитные элементы с прямоугольной петлей гистерезиса
- •35. Реле на негатронах
- •36. Реле на базе оптронов. Твердотельные реле.
28. Индукционные реле. Тяговые характеристики индукционного реле.
Индукционные двухэлементные секторные реле переменного тока ДСШ применяют в качестве путевых реле в рельсовых цепях с непрерывным питанием частотой 50 Гц (ДСШ-12) и 25 Гц (ДСШ-13). Их конструкция (рис. 7.4) состоит из двух электромагнитов переменного тока, которые называют местным (МЭ) 1 и путевым (ПЭ) 6 элементами. Сердечники МЭ и ПЭ расположены симметрично друг относительно друга и представляют собой соответственно Ш-образный 1 и П-образный 6 пакеты из листовой трансформаторной стали. Оба элемента закреплены на металлической станине, в воздушном зазоре между ними перемещается в вертикальной плоскости легкий алюминиевый сектор (якорь) 5. Ход сектора ограничивается роликами 4 и 7. К сектору крепится тяга 2, управляющая контактной системой 3. Когда реле выключено, то сектор находится в нижнем положении (у ролика 4). При включении электромагнитов на сектор действует вращающий момент, который перемещает его вверх (к ролику 7), переключая контакты. Фронтовые и тыловые контакты выполнены из графита с серебряным наполнением, а общие контакты – из серебра.
Реле ДСШ относится к I классу надежности, так как его сектор отпускается под действием силы тяжести. У индукционного реле отсутствует явление магнитного залипания якоря.
Электромагниты индукционного реле (рис. 7.5) создают два переменных магнитных потока со сдвигом по фазе на угол φ: Ф1 = Фm1sinωt, Ф2 = Фm2sin(ωt + φ). Потоки Ф1 и Ф2 индуцируют в секторе вихревые токи i1 и i2. Пусть в данный момент времени поток Ф1 направлен за плоскость чертежа (+) и возрастает (↑), а поток Ф2 имеет противоположное направление (-) и убывает (↓). Магнитный поток вихревого тока препятствует изменению порождающего потока. Исходя из этого и, применяя правило правой руки для катушки с током, определим, что токи i1 и i2 направлены против часовой стрелки.
Рис. 7.6. Тяговая характеристика индукционного реле
На проводник с током в магнитном поле действует механическая сила, направление которой определяется по правилу левой руки. Обозначим через f1(f2) силу, возникающую в результате взаимодействия потока Ф1(Ф2) с током i2(i1). В данном случае силы f1 и f2 направлены вправо. Они создают вращающий момент, перемещающий сектор вверх. Таким образом, принцип действия индукционного реле основан на взаимодействии переменного магнитного потока одного электромагнита с током, индуцированным в секторе переменным магнитным потоком другого электромагнита.
Построим тяговую характеристику индукционного реле (рис. 7.6). Токи i1, i2 отстают от потоков Ф1 и Ф2 на 90°. В результате весь период разбивается на восемь участков. На рис. 7.7 для каждого участка показаны характер изменения и направление потоков, токов и сил f1, f2. Силы направлены вправо (участки с нечетными номерами) или в разные стороны (участки с четными номерами). В последнем случае потоки имеют одно направление и одинаковое изменение, а сила, направленная вправо, всегда больше силы, направленной влево. Например, на участке 2 f1 > f2, поскольку Ф1 > Ф2 и i2 > i1. Поэтому результирующая сила fрез=f1+f2 всегда направлена в одну сторону (вправо), и сектор перемещается в эту сторону (а не раскачивается).
Рис. 7.7. Варианты взаимодействия потоков и токов в индукционном реле
Зависимости сил f1 и f2 от ωt (см. рис. 7.6) построены исходя из того, что , если Ф1 = 0 или i2 = 0 , а f2 = 0 , если Ф2 = 0 или i1 = 0 . При этом за положительное направление силы принято направление вправо. График fрез = f1 + f2 - тяговая характеристика индукционного реле.
Силы f1 и f2 изменяются с двойной частотой по сравнению с частотой питающего напряжения. Сила тяги, действующая на сектор, всегда направлена в одну сторону (fрез > 0), и нет вибрации сектора из-за воздействия на сектор двух сил со сдвигом по фазе. Чтобы изменить направление результирующей силы, надо изменить на 180° фазу одного из потоков.
Результирующая сила максимальная при угле φ = 90°. При этом имеют место только нечетные участки, когда силы f1 и f2 направлены в одну сторону (рис. 7.8, а). По этой причине угол сдвига фаз между потоками Ф1 и Ф2, равный 90°, называют идеальным.
Результирующая сила равна 0 при угле φ = 0°. При этом имеют место только четные участки, когда силы f1 и f2 направлены в разные стороны и уравновешивают друг друга ( рис. 7.8, б). Таким образом, чтобы индукционное реле работало, необходим некоторый угол сдвига между магнитными потоками электромагнитов. Поэтому его также называют фазочувствительным.
Рис. 7.8. Частные случаи тяговой характеристики индукционного реле
