- •Запорожець т.М., ткаченко о.В.
- •Content module 1: introduction to physiology lesson 1 Physiology subject and tasks. Physiological investigations methods. Excitability. Excitement. Irritation laws.
- •Importance of Chronaxie
- •Materials for auditory self-work.
- •Task 2. To prepare nervous-muscular preparation.
- •Task 3. Nerve and muscle excitability measurement.
- •Task 4. Muscles contractions dependence on single irritations force.
- •Task 5. Draw and analize the curve “force-time”.
- •Literature recommended:
- •Materials for self-control: Control questions:
- •Content module 2: “excitable tissues physiology” lesson 2 Nervous and muscular fibers resting potential and action potential.
- •1. The topic studied actuality.
- •Electrical changes during muscular contraction
- •Resting membrane potential
- •Action potential
- •Repolarization
- •Action potential curve
- •Latent Period
- •Importance of intracellular potassium ions:
- •Action Potential
- •Refractory period
- •Excitability changings (figure of action potentials phases and excitability changings correlation)
- •4.Materials for auditory self-work.
- •Task 1. Galwani’s first experiment.
- •Task 2. Galwani’s second experiment (contraction without metal).
- •Task 3. K.Matteuchi’s experiment.
- •5. Literature recommended:
- •6. Materials for self-control:
- •Lesson 3 Nervous and muscular fibers electrical irritation mechanisms investigation. Electromyography.
- •1. The topic studied actuality.
- •III. Fibrillation and denervation hypersensitivity
- •IV. Myasthenia gravis
- •Emg application in dentistry different branches
- •Emg application in therapeutical dentistry.
- •Emg application in surgical dentistry.
- •Emg application in orthopedical dentistry.
- •Emg application in children dentistry and orthodonthia.
- •3.2. Topic content.
- •Materials for auditory self-work.
- •5. Literature recommended:
- •6. Materials for self-control:
- •Lesson 4 Skeletal muscles contraction mechanisms investigation
- •1. The topic studied actuality.
- •Skeletal Muscle
- •Sarcomere
- •Composition of muscle
- •In Skeletal Muscle
- •Tongue, lips muscles and masticatory muscles contractive types and regimes at conversation.
- •Contractive types and regimens at mastication.
- •Masticatory muscles physiological properties. Masticatory musculature force and work.
- •The new in the world of masticatory muscles physiology and functional anatomy
- •4. Materials for auditory self-work.
- •Task 1. Skeletal muscle contractions curves registration
- •Task 2. Dynamometry
- •Literature recommended:
- •Materials for self-control:
- •Lesson 5 Skeletal and smooth muscles comparative characteristics.
- •Skeletal and smooth muscles comparative characteristics
- •Further events (common for skeletal and smooth muscles) –
- •4.Materials for auditory self-work.
- •4.1. List of study practical tasks necessary to perform at the practical class.
- •Task 1. Frog’s stomach smooth muscles contractions registration
- •Task 2. To compare frog skeletal and smooth muscle to chemicals
- •5. Literature recommended:
- •6.Materials for self-control:
- •Lesson 6 Excitation transmission investigation through nervous fibers and nervous-muscular synapses
- •1. The topic studied actuality.
- •3.2.Topic content.
- •Neuronal theory.
- •Electrical theory.
- •Chemical theory
- •2 Main types:
- •Functions:
- •Functions:
- •Functions:
- •Functions of Myelin Sheath
- •Neurilemma
- •Mechanism of Saltatory Conduction
- •Nervous fibers properties
- •Synapses physiology
- •4 Main mediators groups:
- •Functions of synapse
- •Electrical Synapse or Ephapse
- •Chemical Synapse
- •Mechanism of Development of epsp
- •Properties of epsp
- •Significance of epsp
- •1. Postsynaptic Inhibition
- •Action of gaba—ipsp
- •2.Presynaptic Inhibition
- •3.Renshaw Cell Inhibition
- •Materials for auditory self-work.
- •4.1.List of study practical tasks necessary to perform at the practical class.
- •Task 1. Isolated impulse conducting law (through nervous fibers).
- •Task 2. Two-sized conduction law.
- •Task 3. Physiological integrity law.
- •Task 4. To study fatigue (tiredness) ability in synapse.
- •Literature recommended:
- •Materials for self-control:
- •Control questions:
- •Lesson 7 Practical experience management on content credit 1,2: “Excitable tissues physiology”
- •Content credit 3: “organism functions nervous regulation” lesson 8 Reflex arc investigation. Receptors physiology.
- •1.The topic studied actuality.
- •3.2. Topic content.
- •1. Somatic Nervous System
- •2. Autonomic Nervous System
- •V.According to receptors localization:
- •VI.According to biological significance:
- •VIII.According to ending result:
- •2. Visceroreceptors:
- •Facial-mandibular region receptors
- •Classification:
- •Significance of Receptor Potential
- •Mechanism of Development of Receptor Potential and Generation of Action Potential in the Nerve Fiber
- •4.Materials for auditory self-work.
- •4.1. List of study practical tasks necessary to perform at the practical class.
- •Task 1. Receptive field definition.
- •Task 2. Reflex arc analysis.
- •Task 3. Gustatory receptors functional mobility determining (before and after eating).
- •5. Literature recommended:
- •6.Materials for self-control:
- •Lesson 9 Excitement processes investigation in cns. Inhibition processes investigation in cns.
- •1. The topic studied actuality.
- •3.2.Topic content.
- •Inhibiting in cns
- •4.Materials for auditory self-work.
- •Task 1. Temporary excitement summation.
- •Task 2. Excitement summation.
- •5. Literature recommended:
- •6.Materials for self-control:
- •Lesson 10 Reflex activity co-ordination mechanisms investigation.
- •1.The topic studied actuality.
- •3.2.Topic content.
- •4.Materials for auditory self-work.
- •4.1.List of study practical tasks necessary to perform at the practical class.
- •Task 1. Excitement irradiation in central nervous system.
- •5.Literature recommended:
- •Materials for self-control:
- •Control questions:
- •Content module 4: “cns role in motor functions regulation”
- •Lesson 11 Spinal cord physiology. Spinal cord role investigation in motor organism functions regulation
- •1.Topic studied actuality:
- •2. Study aims:
- •3.2. Topic content.
- •Internal structures of spinal cord
- •Neurons in Anterior Gray Horn
- •Neurons in Lateral Gray Horn
- •Neurons in Posterior Gray Horn
- •Spinal proper functions:
- •Spine vegetative functions:
- •Spine afferent ways:
- •Efferent ways:
- •Pyramidal tracts
- •Termination
- •Function
- •Effects of Lesion
- •Materials for auditory self-work.
- •Task 1. To investigate muscular tone in human being
- •Task 3. Deep (prophound) spinal reflexes investigation
- •5. Literature recommended:
- •Materials for self-control:
- •Lesson 12 Somato-sensor system investigation (skin and proprioceptive sensitivity, nociceptive sensitivity)
- •1.Topic studied actuality.
- •2 Main reasons:
- •Injured organ oxygen consumption inhibiting
- •Insufficiency in it
- •Pain classification:
- •Conductive ways
- •Visceral pain
- •Referred pain
- •3 Variants of pain theory:
- •Situation
- •Termination
- •Function
- •Situation
- •Termination
- •Function
- •Situation
- •Termination
- •Functions
- •Ascending tracts of spinal cord
- •Descending tracts of spinal cord
- •Sensory pathways
- •Pain projective zones at different teeth diseases
- •Dental pain conductive tracts and central mechanisms
- •4. Materials for auditory self-work.
- •4.1.List of study practical tasks necessary to perform at the practical class.
- •Task 1. To investigate hands and face skin pain sensitivity
- •Task 2. Temperature sensitivity investigation on hand
- •Task 3. Muscular-articular sensitivity investigation
- •Task 4. Pressure and weight sense investigation (Weber-Fechner’s law)
- •Task 5. Complicated sensitivity types investigation.
- •5. Literature recommended:
- •6. Materials for self- control:
- •Lesson 13 Posterior brain physiology. Posterior brain role investigation in motor and sensor functions regulation
- •1. The topic studied actuality.
- •2. Study aims:
- •3.1.Basic knowledge, skills, experiences, necessary for study the topic:
- •3.2. Topic content.
- •Medulla oblongata functions:
- •Pons cerebri
- •4. Materials for auditory self-work.
- •Task 1. Trigeminal nerve (V-th pair investigation)
- •Task 2. Facial nerve (VII-th pair) investigation
- •Task 3. Glossopharyngeal nerve (IX-th pair) investigation
- •Task 4. Accessory nerve (XI-th pair) investigation
- •Task 5. Hypoglossal nerve (XII-th pair) investigation
- •5. Literature recommended:
- •6. Materials for self- control:
- •Lesson 14 Midbrain physiology. Midbrain role investigation in motor and sensor functions regulation
- •1. The topic studied actuality.
- •3.2. Topic content.
- •Superior Colliculus
- •Red Nucleus
- •Connections of Red Nucleus
- •Task 2. Stato-kinetic human reflexes.
- •Task 3. Investigate static and stato-kinetic reflexes in guinea pig.
- •5. Literature recommended:
- •Control questions:
- •Lesson 15 Cerebellum, diencephalon, subcortex nuclei physiology, their role in organism motor functions regulation
- •1. The topic studied actuality.
- •Structural organization of a cerebellum.
- •Functions of cerebellum
- •Cerebellum and its connections
- •Signs of a cerebellum lesion
- •Signs of a pallidum lesion.
- •Signs of a striate body lesion. Striatic syndrome.
- •2. Study aims:
- •3.2.Topic content.
- •Intermediate brain physiology
- •Functions:
- •Functions
- •1. Secretion of posterior pituitary hormones
- •2. Control of anterior pituitary
- •3. Control of adrenal cortex
- •4. Control of adrenal medulla
- •5. Regulation of body temperature
- •10. Regulation of water balance
- •11. Regulation of sleep and wakefulness
- •12. Role in behavior and emotional changes
- •13. Regulation of sexual function
- •14. Regulation of response to smell
- •15. Role in circadian rhythm
- •Cerebellum physiology
- •Interneuronal activity in cerebellum
- •Components and connections of functional divisions of cerebellum
- •Corticocerebellum (neocerebellum)
- •Functions of cerebellum
- •Connections of basal ganglia
- •1. Control of voluntary motor activity
- •2. Control of muscle tone
- •3. Control of reflex muscular activity
- •4. Control of automatic associated movements
- •5. Role in arousal (excitive) mechanism
- •4.Materials for auditory self-work.
- •4.1.List of study practical tasks necessary to perform at the practical class.
- •Task 1. To investigate movement co-ordination
- •Task 2. Asynergy investigation
- •Task 3. Dynamic ataxy investigation
- •Task 4. To put the attention to:
- •1. Literature recommended:
- •Materials for self-control:
- •Lesson 16 Practical experiences management on content credit 4: “cns role in motor functions regulation”
- •1. The topic studied actuality.
- •2. Study aims:
- •Topic content.
- •Ans is divided into 3 main parts:
- •Vegetative and somatic nervous system comparative characteristics
- •Ans mediator mechanisms
- •Organs with monosympathetic innervation:
- •Organs with monoparasympathetic innervation:
- •Vegetative ganglii features:
- •Effects of autonomic nervous system of selected organs
- •Metasympathetic nervous system (mns)
- •Mns functions:
- •2. Materials for auditory self-work.
- •Task 1. To perform pupils investigation
- •Task 2. Reflex to eyes convergence
- •Task 3. Vasomotor skin functions investigation
- •Task 4. Dermographism
- •Task 5. Erben’s reflex
- •Task 6. Abrams’ reflex
- •Literature recommended:
- •Materials for self-control:
- •Control questions:
- •Hormones synthesis, secretion and releasing. Hormones classification (according to their chemical structure):
- •Interrelations between nervous and humoral mechanisms in physiological functions regulation.
- •6. Materials for self-control:
- •Control questions:
- •Lesson 19 Hormones role in psychical and physical development, linear body growth, adaptation, homeostasis regulation.
- •1. The topic studied actuality.
- •2.Study aims:
- •Corticotropine main effects:
- •Thyreotropine main effects:
- •Gonadotropines main effects:
- •Oxytocine main effects:
- •Vasopressine main effects:
- •Glucocorticoids effects-1
- •Glucocorticoids effects-2
- •Glucocorticoids effects-3
- •Vascular effects:
- •Glucocorticoids metabolic effects
- •Mineralocorticoids main effects:
- •Adrenaline main effects:
- •Adrenaline metabolic effects;
- •Somatotropine main effects:
- •Prolactine main effects:
- •Male sexual hormones
- •Inhibine
- •Progesterone functions:
- •Stress, general adaptation syndrome.
- •General adaptational syndrome morphological features.
- •Stress-inducing and stress-limiting systems. Diseases of adaptation
- •Stress-triggers or stressors:
- •4. Materials for auditory self-work.
- •Task 1. To investigate adrenaline influence on pupil width
- •Task 2. To observe pituitrine action to melanoforme cells
- •Task 3. To observe insuline action on white mice
- •Task 4. Spermatozoid reaction of Gally-Maininy
- •5. Literature recommended:
- •6. Materials for self-control:
- •Credit control on module 1: “general physiology”. Questions list for credit module control module 1
- •Content module 5. Autonomic nervous system role in visceral functions regulation.
- •Content module 6.
- •Visceral functions humoral regulation and endocrine glands role in regulation.
- •Tests for self-control:
- •Tasks for self-control
- •1. Introduction.
- •3. Ending aims of studying the subject “Normal Physiology”.
- •4. Module 1: General physiology
- •4.3. The student self-work types
- •4.4. Individual tasks list:
- •4.5. Credit modules assessment methodics.
- •4.6. Theoretical questions list for students preparing to credit module control
- •4.7. Practical tasks and works list to the credit module control Module 1: General Physiology Practical skills on excitive structures physiology.
- •Practical skills on organism functions nervous regulation physiology and cns role in motor functions regulation.
- •4.8. Literature recommended on the subject “Normal Physiology”.
- •Literature recommended
Lesson 5 Skeletal and smooth muscles comparative characteristics.
The topic studied actuality.
Smooth muscles are in inner organs composition. They provide motor function (alimentary tract, urinary-sexual system, blood vessels and others) due to their contraction.
Knowledge about smooth muscles functioning mechanisms and regularities allows particularly to understand vascular tone, alimentary tract motor activity disorders mechanisms. Big sensitivity to chemicals is rather important for practical doctors. It is so because pharmacological agents changing muscular contractility is in usage at many pathological conditions.
Study aims:
To know: excitement changing peculiarities in smooth muscles during contraction, contraction peculiarities; smooth muscles features; automatism mechanism; contraction and relaxation distinguishing features.
To be able to: draw the scheme explaining smooth muscle excitability changings during its contraction; to make the table on skeletal and smooth muscles physiological features comparative characteristics.
Pre-auditory self-work materials.
3.1.Basic knowledge, skills, experiences, necessary for study the topic:
Subject |
To know |
To be able to |
Medical biophysics |
Electrical phenomena in excitable tissues, tissues activity energetic providing |
Work with electrical devices |
Medical biology |
Substances transport mechanisms through biological membranes |
|
Histology |
Smooth muscles morphological-functional characteristics |
Prepare smooth muscles preparation and differentiate it from skeletal muscles preparation |
Therapy |
Smooth muscles functioning peculiarities in respiratory, alimentary and uro-sexual tracts. |
|
3.2.Topic content.
DISTRIBUTION
Smooth muscles are non-striated (plain) and involuntary muscles. These muscles form the major contractile tissues of various organs.
Muscles, which are in association with viscera, are called smooth muscles or visceral muscles. These muscles are supplied by sympathetic and parasympathetic division of autonomic nervous system. Smooth muscles form the main contractile units of wall of the various visceral organs and are present in the following structures:
a. Wall of organs like esophagus, stomach and intestine in gastrointestinal tract
b. Ducts of digestive glands
c. Trachea, bronchial tube and alveolar ducts of respiratory tract
d. Ureter, urinary bladder and urethra in excretory system
e. Wall of blood vessels in circulatory system
f. Errector pilorum of skin
g. Mammary glands, uterus, genital ducts, prostate gland and scrotum in reproductive system
h. Iris and ciliary body of the eye.
STRUCTURE
Smooth muscle fibers are fusiformed or elongated cells of different length.
Smooth muscle fibers are generally very small, measuring 2 to 5 microns in diameter and 50 to 200 microns in length. Each muscle fiber contains myofibrils. The myofibrils are made up of muscle proteins. But, there are no dark and light alternated bands. This is the cause for nonstriated appearance of the smooth muscle.
Smooth muscle fiber contains actin, myosin and tropomyosin components. But troponin or troponin like substance is not present. For the initiation of contraction in skeletal muscle, the calcium ions released from cisternae of sarcoplasmic reticulum, combine with troponin. But in smooth muscle, in addition to the absence of troponin, the sarcoplasmic reticulum is also poorly developed. So, when smooth muscle fiber is excited, the calcium ions enter the sarcoplasm from extracellular fluid through the voltage-gated calcium channels. The calcium ions combine with another protein called calmodulin leading to initiation of contraction.
Electron microscopic studies reveal that some dense bodies are attached to the cell membrane and scattered all over the body of the fibers. Actin filaments are attached to these dense bodies. In between actin filaments, the thick myosin filaments are situated. There are cross bridges between actin and myosin filaments. The cross bridges help in the sliding mechanism of muscle contraction.
CONTRACTILE PROCESS IN SMOOTH MUSCLE
In smooth muscle, latent period is long and contraction process is slow. The relaxation is also slow. Thus, the total twitch period is about 1 to 3 seconds.
MOLECULAR BASIS OF SMOOTH MUSCLE CONTRACTION
The process of excitation and contraction is very slow in smooth muscles. This is because of poorly developed L tubules (sarcoplasmic reticulum) in smooth muscle fibers. So, the calcium ions, which are responsible for excitation contraction coupling, must be obtained from the extracellular fluid. This makes the process of excitation contraction coupling slow.
Stimulation of ATPase activity of myosin in smooth muscle is different from that in the skeletal muscle. In smooth muscle, the myosin has to be phosphorylated for the activation of myosin ATPase. The phosphorylation of myosin occurs in the following manner. Calcium entering the sarcoplasm from the extracellular fluid combines with calmodulin forming calcium-calmodulin complex. This activates an enzyme called calmodulin-dependent myosin light chain kinase. This enzyme in turn causes phosphorylation of myosin followed by activation of myosin ATPase. Now, the sliding of actin filaments starts.
Phosphorylated myosin gets attached to the actin molecule for longer period. It is called latch bridge mechanism and it is responsible for sustained contraction of the muscle with expenditure of little energy.
Relaxation of muscle may occur due to the dissociation of calcium-calmodulin complex.
HORMONES INFLUENCE ON SMOOTH MUSCLE
Some hormones of the body cause the contraction of smooth muscle and some hormones inhibit the contraction. Action of the hormone depends upon receptors present in the cell membrane. Receptors are of two types namely excitatory receptors and inhibitory receptors. Hormones binding with excitatory receptors cause contraction of muscle by producing depolarization. Hormones binding with inhibitory receptors inhibit contraction by increasing the negativity of membrane potential, which is called hyperpolarization.
NERVE SUPPLY TO SMOOTH MUSCLE
Smooth muscles are supplied by both sympathetic and parasympathetic nerves, which antagonize each other in control the activities of smooth muscles. However, nerves are not responsible for the initiation of any activity in smooth muscle. Tonus of smooth muscles is independent of nervous control.
NEURO-MUSCULAR JUNCTION OF
SMOOTH MUSCLE
There is no well defined neuro-muscular junction in smooth muscle. The nerve fibers diffuse on to muscle fibers The chemical neurotransmitters are directly released in the interstitial fluid.
