- •Глава I 11
- •§1. Формирование числовых систем 11
- •§2. Аксиоматическое обоснование евклидовой геометрии. 27
- •Вводная глава.
- •Назначение знаковых языковых систем
- •1. Язык как инструмент интеллекта
- •2. Функциональные свойства языковых систем
- •3. Определение и примеры языковых систем
- •Рассмотрим некоторые примеры языковых систем. Пример 1
- •Пример 2
- •Пример 5. Система знаков представляющих музыкальные звуки называется нотами и формирует язык музыки.
- •4. Основные языковые понятия
- •5. Предметное назначение языковых систем
- •6. Цели краткого курса математики для гуманитариев
- •7. Вопросы и задания к теме «Назначение знаковых языковых систем»
- •Построение множества рациональных чисел.
- •Вывод 1.
- •Замечание 1.
- •Аксиомы операции умножения.
- •Задача 2.
- •Вывод 2.
- •Аксиоматическое построение множества действительных чисел.
- •Аксиома непрерывности Кантора.
- •Определение 2.
- •О представлении действительных чисел.
- •Задача 3.
- •Языковые свойствах числовых систем.
- •3. Десятичная (и вообще, любая k-ичная) знаковая реализация действительных чисел изоморфна геометрической реализации действительных чисел в виде отрезков прямой.
- •Вопросы и задания к теме «числовые системы».
- •§2. Аксиоматическое обоснование евклидовой геометрии.
- •2.1. О “Началах” Евклида.
- •2.1.1. Структура «Начал» Евклида
- •2.1.2 Историческое значение «Начал» Евклида
- •2.1.3 Историческое развитие дедуктивной схемы «Начал» Евклида
- •2.2 Аксиоматика д. Гильберта(1862-1943)
- •2.2.1 Группа 1. Аксиомы соединения.
- •2.2.3 Группа 3. Аксиомы конгруэнтности.
- •Вывод 2.
- •2.2.4 Группа 4. Аксиомы непрерывности.
- •Замечание 2.
- •Замечание 3.
- •Вывод 3.
- •2.2.5 Группа 5. Аксиома параллельности (евклидовой геометрии).
- •Замечание 4.
- •2.3 Два недостатка аксиоматики д. Гильберта.
- •2.4 Структурный характер аксиоматики д.Гильберта
- •2.5. Вопросы и задания к теме «Аксиоматическое обоснование евклидовой геометрии».
- •§3. Структура векторного пространства.
- •3.1 Модель направленных отрезков.
- •Сложение обладает свойствами:
- •Свойства операции умножения:
- •Определение.
- •3.2 Построение арифметической модели векторного пространства направленных отрезков
- •Теорема размерности.
- •Вывод 1.
- •Вывод 3.
- •Вывод 4.
- •3.3 Определение и примеры абстрактного векторного пространства.
- •Пример 1.
- •Пример 2.
- •Определение абстрактного векторного пространства.
- •Следствие.
- •3.4 Аксиомы скалярного произведения векторов.
- •Следствие.
- •Следствие.
- •Определение n – мерного евклидова векторного пространства.
- •3.5 Вопросы и задания к теме «Структура векторного пространства»
- •§4 Модель Вейля евклидовой геометрии.
- •4.1 Арифметическая модель трехмерного евклидова пространства.
- •Определение.
- •Вывод 1.
- •Вывод 2.
- •4.2 Арифметическая модель многомерного евклидова пространства
- •Вывод 3.
- •Замечание о схеме г.Вейля.
- •4.3. Вопросы и задания к теме «Модель Вейля евклидовой геометрии»
- •§ 5. Модель а. Пуанкаре плоскости Лобачевского.
- •5.1 Основные понятие модели а. Пуанкаре плоскости Лобачевского.
- •V’. Аксиома параллельности Лобачевского.
- •Определение плоскости Лобачевского.
- •С ледствие 2.
- •2. Взаимное расположение прямых в плоскости l2.
- •3. Перпендикуляр к стороне угла.
- •5. Четвертый признак конгруэнтности треугольников.
- •Вывод 2.
- •5.3 Научная значимость открытия геометрии Лобачевского.
- •Вывод 3.
- •5.4 Вопросы и задания к теме «Модель Пуанкаре плоскости Лобачевского»
- •Следствие 2. Задание отношения эквивалентности на некотором множестве равносильно разбиению этого множеств на непересекающиеся подмножества.
- •6.2 Понятие математической структуры.
- •Замечание 1.
- •6.4 Формальная и содержательная аксиоматики, аксиоматические теории и математические структуры.
- •Вывод 1.
- •Вывод 2.
- •Определение.
- •6.5 Изоморфизм.
- •Пример 1.
- •Определение изоморфизма.
- •6.6 Вопросы и задания к теме «Математические структуры и аксиоматические теории».
- •§7 Требования, предъявляемые к системам аксиом.
- •7.1 Непротиворечивость системы аксиом.
- •Вывод 1.
- •7.2 Независимость аксиоматической системы.
- •7.3 Независимость аксиомы параллельности.
- •Замечание 1.
- •7.4 Дедуктивная полнота и категоричность системы аксиом.
- •Определение (дедуктивной полноты).
- •Определение (категоричности).
- •7.5 Историческая роль V постулата Евклида в развитии оснований математики.
- •7.6 Вопросы и задания к теме «Требования, предъявляемые к системе аксиом»
- •§8 Смысловой анализ текстовых продуктов.
- •8.1 Понятие смыслового анализа текстового продукта.
- •8.2 Языковые свойства имен объектов.
- •8.4 Понятие искусственного языка.
- •8.5 Понятие и анализ парадоксов.
- •8.6 “Ахиллес и черепаха”.
- •8.7 Парадокс пустого множества.
- •8.8 Парадокс конечной достижимости в очереди.
- •8.9 Противоречивость в дедуктивных схемах
- •Пример .
- •8.10 Вопросы и задания к теме «Смысловой анализ текстовых продуктов»
- •9.2 Относительная частота и вероятность случайного события.
- •9.3 Классическое определение вероятности.
- •9.4 Вопросы и задания к теме «Понятие вероятности случайного события»
- •Моделирование случайных событий случайными величинами.
- •10.1 Понятие случайной величины.
- •10.2 Геометрические вероятности.
- •1. Игра « Мексиканский ковёр».
- •2. Задача о встрече.
- •10.3 Парадокс Бертрана.
- •10.4 Условия корректного моделирования случайного события
- •10.5 Вопросы и задания к теме «Моделирование случайных событий случайными величинами»
- •Заключение
- •Обозначения.
- •Литература
3. Определение и примеры языковых систем
Три функции языковой системы можно объединить в определение языковых знаковых систем, представленное в виде следующего файла Ф.1
-
Ф.1
Определение символьного или знакового языка
Знаковая или символьная система, используемая для такой организации структуры мыслительных образов, которая представляет информацию, называется символьным или знаковым языком.
Рассмотрим некоторые примеры языковых систем. Пример 1
Система дискретных звуковых знаков есть общепринятое понятие человеческого языка, являющегося средством общения.
Пример 2
Система последовательностей двух символов 0 и 1 представляет язык числовых кодов: 110001, 100100100, и т.д.
Пример 3. Система жестов или сигналов, при помощи которых передаётся информация: азбука Морзе, морские сигналы при помощи флажков, жестикуляция, при помощи которой общаются глухонемые люди.
Пример 4. Набор цветных красок, позволяющий создавать любые сочетания цветов и рисовать художественные картины.
Пример 5. Система знаков представляющих музыкальные звуки называется нотами и формирует язык музыки.
-
Ф.2
Нотные знаки гаммы целых звуков одной октавы
Пример 6. Система направленных отрезков формирует язык векторов в геометрии и физике.
Пример 7. Десятичная система знаков формирует язык действительных чисел.
Пример 8. Система дорожных знаков не является языком. В этой знаковой системе присутствует опорная функция, но отсутствует логическая функция, которая позволяет строить умозаключения.
4. Основные языковые понятия
Языковой способ коммуникации, то есть передачи информации, основан на композиции знаковых единиц – потоке слов, организованных в предложения – тексты. Приведём те языковые понятия, при помощи которых формируется понятие текста любого языка в виде следующих файлов.
-
Ф.3
Определение формального слова
Языковую знаковую или символьную единицу, представляющую мыслительный образ, назовём формальным словом
-
Ф.4
Определение формального предложения
Упорядоченное множество формальных слов, несущее в себе информацию законченного характера, назовём формальным предложением.
-
Ф.5
Определение формального текста
Последовательность формальных предложений, синтезирующая информационный поток, назовём формальным текстом.
Тексты, организованные в самостоятельные блоки, как это сделано выше, назовём файлами.
-
Ф.6
Определение файла
Текст
Файлы несут свой мыслительный образ, и поэтому их можно использовать для организации более сложных, нелинейных текстовых структур: каталогов, диаграмм, блок-схем и т.д., например, Схема 1, приведённая выше. Ещё пример – формирование понятия символьного языка в виде следующей блок-схемы:
