- •С.Н. Астахов Автоматизированные информационные системы расчета основных моделей исследования операций. Казань 2016
- •Раздел 1 26
- •Раздел 1
- •1.1. Причины универсальности математики.
- •2.2. Особенности математических методов, применяемых к решению экономических задач
- •Раздел 2
- •2.1. Квалиметрия и квалиметрические модели.
- •2.1.2 Основы прикладной квалиметрии.
- •2.2. Математическое программирование.
- •2.2.3. Методы и алгоритмы решения задач математического программирования
- •Алгоритм метода Фогеля.
- •Основной алгоритм метода двойного предпочтения.
- •Алгоритм метода северо-западного угла.
- •Алгоритм метода потенциалов.
- •2.2.4. Задачи целочисленного программирования. Метод Гомори.
- •2.2.5. Динамическое программирование
- •2.3.9. Стратегии теории игр
- •2.4. Теория статистических решений (Игры с природой)
- •2. 5. Модели в. В. Леонтьева
- •2.6. Теория массового обслуживания
- •Теперь вернемся к процессам рождения (размножения) и гибели
- •2.7.2. Применение метода Монте-Карло в социально – экономическом моделировании
- •2.7.3. Использование метода Монте Карло для систем массового обслуживания
- •2.8.2. Анализ сетевых графиков.
- •2.8.3. Оптимизация сетевых графиков
- •Посмотрим на составление портфеля из двух рисковых активов
- •Очевидно, что возникает задача выбора оптимального портфеля.
- •2. 10.2. Пример актуарного моделирования в страховании.
- •Построение страховой математической модели оценки профессиональных рисков
- •Размер заработной. Платы, руб.
- •Шкала оценки профессиональной утраты трудоспособности
- •Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель
- •2.11.2. Эконометрические модели
- •Линейная регрессия
- •2.11.3. Оценка значимости коэффициентов модели
- •Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
- •Фиктивные переменные
- •Проблемы гетероскедастичности
- •Теории временных рядов
- •2.11.5. Методы анализа временных рядов
- •Модели тренда
- •Временные ряды и прогнозирование
- •Графические методы анализа временных рядов
- •Пример анализа временных рядов
- •Особенности функционирования программного комплекса сид
- •Раздел 3.
- •Задача 4.
- •Задача 5.
- •Задание 6
- •Проверка гипотезы о показательном распределении
- •Расчет основных показателей системы массового обслуживания
- •Исследование видоизмененной смо
- •Задание 12 “Потоки платежей: аннуитеты”
- •Задание 13 «Потоки платежей: погашение долга. Погасительные фонды»
- •Задание 13 «Потоки платежей: инвестиционные проекты.»
- •Задание 14 «Инвестиционный портфель»
- •Задание 15 «Первичные ценные бумаги»
- •Задание 16 “Финансовый риск. Формирование портфеля”
- •Исходные условия для задач 1,2,3.
- •Исходные условия для задач а, b.
- •Раздел 4
- •ЗадачаI
- •Финансовые функции
- •Задачи, связанные с функцией бс
- •3. Задание с использованием функции чпс
- •Задание с использованием функции кпер
- •Задания с использованием функции ставка
- •Описательная статистика.
- •Описательная статистика Контрольное задание 1.
- •Задание 2. Разработка и анализ эконометрической модели
- •Математические методы исследования экономики (тестовая база)
- •178. Чем меньше разница между страховой суммой и оценкой объекта страхования
- •179. При страховании по системе «дробной части» устанавливаются
- •180. Страхование по системе первого риска предусматривает выплату страхового возмещения
Алгоритм метода Фогеля.
В каждой строке находят разность между двумя наименьшими стоимостями и записывают ее около соответствующей строки справа;
В каждом столбце находят разность между двумя наименьшими стоимостями и записывают ее под соответствующим столбцом;
Среди всех полученных разностей находят максимальную и распределяют объем перевозки в клетку строки или столбца с наименьшей стоимостью;
Исключают из рассмотрения строку или столбец с распределенными поставками и возвращаются к пункту 1. Процесс продолжается до тех пор, пока все запасы не будут вывезены, а потребности удовлетворены;
Когда план построен, рассчитываются транспортные расходы.
Основной алгоритм метода двойного предпочтения.
В таблице в каждом столбце надо отметить галочкой клетку с минимальной стоимостью и в каждой строке отмечают галочкой клетку с также минимальной стоимостью;
В клетки с двумя галочками записывают максимально возможные объемы перевозок, каждый раз, исключая соответствующий столбец или строку;
Распределяют перевозки по клеткам с одной галочкой;
В оставшейся части таблицы перевозки распределяют в клетки с минимальной стоимостью.
Когда план построен, можно рассчитывать транспортные расходы.
Алгоритм метода северо-западного угла.
Пользуясь таблицей, распределяют груз, начиная с левой верхней, условно называемой северо-западной, клетки (1,1). Необходимо удовлетворить потребности В1 за счет поставщика А1;
а). Если b1>a1, в клетку (1,1) записывают a1 и строку 1 вычеркивают из рассмотрения;
b). Если a1>b1, в клетку (1,1) записывают b1 и столбец 1 вычеркивают из рассмотрения;
а). Если b1>a1, ∆= b1 - a1 – неудовлетворенные потребности. Спускаются на клетку вниз и сравнивают ∆ с a2;
b). Если a1>b1, ∆=a1 - b1 – не вывезенные запасы. Двигаются по строке вправо и сравнивают ∆ с b2;
Необходимо вернуться к пункту 2;
Рассчитываются транспортные расходы.
Алгоритм метода потенциалов.
проверяется тип модели транспортной задачи и в случае открытой модели сводим ее к закрытой;
находится опорный план перевозок путем составления 1-й таблицы одним из способов - северо-западного угла или наименьшей стоимости;
проверяем план (таблицу) на удовлетворение системе уравнений и на невыражденность; в случае вырождения плана добавляем условно заполненные клетки с помощью « 0 »;
для опорного плана определяются потенциалы ui и vj, соответствующие базисным клеткам, по условию:
ui + vj = cij
Таких уравнений будет m n 1 , а переменных будет m n. Для их определения одну из переменных полагают равной любому постоянному значению. Обычно принимают u1 = 0.
После
этого для небазисных клеток опорного
плана определяются оценки
,
где
При этом если 0, то опорный план оптимален, если же среди окажется хотя бы один положительный элемент, то опорный план можно улучшить.
Улучшение опорного плана осуществляется путем целенаправленного переноса из клетки в клетку транспортной таблицы отдельных перевозок без нарушения баланса по некоторому замкнутому циклу.
Циклом транспортной таблицы называется последовательное соединение замкнутой ломаной линией некоторых клеток, расположенных в одном ряду (строке, столбце), причем число клеток в одном ряду должно быть равно двум.
Каждый цикл имеет четное число вершин, одна из которых в клетке с небазисной переменной, другие вершины в клетках с базисными переменными. Клетки отмечаются знаком «+», если перевозки в данной клетке увеличиваются и знаком «–» в противном случае. Цикл начинается и заканчивается на выбранной небазисной переменной и отмечается знаком «+». Далее знаки чередуются.
Количество единиц продукта, перемещаемого из клетки в клетку по циклу, постоянно, поэтому сумма перевозок в каждой строке и в каждом столбце остаются неизменными. Стоимость всего плана изменяется на цену цикла.
Цена цикла – это стоимость перевозки единицы продукта по циклу с учетом знаков вершин.
Улучшение опорного плана осуществляется путем нахождения цикла с отрицательной ценой.
Если критерий оптимальности не выполняется, то переходим к следующему шагу. Для этого:
а) в качестве начальной небазисной переменной принимается та, у которой оценка имеет максимальное значение;
б) составляется цикл пересчета;
в) находится число перерасчета по циклу: число X=min{Xij}, где Xij - числа в заполненных клетках со знаком « - »;
г) составляется новая таблица, добавляя X в плюсовые клетки и отнимая X из минусовых клеток цикла;
Возвращаются к пункту 3 и т.д.
Через конечное число шагов (циклов) обязательно приходят к ответу, так как транспортная задача всегда имеет решение.
