- •С.Н. Астахов Автоматизированные информационные системы расчета основных моделей исследования операций. Казань 2016
- •Раздел 1 26
- •Раздел 1
- •1.1. Причины универсальности математики.
- •2.2. Особенности математических методов, применяемых к решению экономических задач
- •Раздел 2
- •2.1. Квалиметрия и квалиметрические модели.
- •2.1.2 Основы прикладной квалиметрии.
- •2.2. Математическое программирование.
- •2.2.3. Методы и алгоритмы решения задач математического программирования
- •Алгоритм метода Фогеля.
- •Основной алгоритм метода двойного предпочтения.
- •Алгоритм метода северо-западного угла.
- •Алгоритм метода потенциалов.
- •2.2.4. Задачи целочисленного программирования. Метод Гомори.
- •2.2.5. Динамическое программирование
- •2.3.9. Стратегии теории игр
- •2.4. Теория статистических решений (Игры с природой)
- •2. 5. Модели в. В. Леонтьева
- •2.6. Теория массового обслуживания
- •Теперь вернемся к процессам рождения (размножения) и гибели
- •2.7.2. Применение метода Монте-Карло в социально – экономическом моделировании
- •2.7.3. Использование метода Монте Карло для систем массового обслуживания
- •2.8.2. Анализ сетевых графиков.
- •2.8.3. Оптимизация сетевых графиков
- •Посмотрим на составление портфеля из двух рисковых активов
- •Очевидно, что возникает задача выбора оптимального портфеля.
- •2. 10.2. Пример актуарного моделирования в страховании.
- •Построение страховой математической модели оценки профессиональных рисков
- •Размер заработной. Платы, руб.
- •Шкала оценки профессиональной утраты трудоспособности
- •Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель
- •2.11.2. Эконометрические модели
- •Линейная регрессия
- •2.11.3. Оценка значимости коэффициентов модели
- •Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
- •Фиктивные переменные
- •Проблемы гетероскедастичности
- •Теории временных рядов
- •2.11.5. Методы анализа временных рядов
- •Модели тренда
- •Временные ряды и прогнозирование
- •Графические методы анализа временных рядов
- •Пример анализа временных рядов
- •Особенности функционирования программного комплекса сид
- •Раздел 3.
- •Задача 4.
- •Задача 5.
- •Задание 6
- •Проверка гипотезы о показательном распределении
- •Расчет основных показателей системы массового обслуживания
- •Исследование видоизмененной смо
- •Задание 12 “Потоки платежей: аннуитеты”
- •Задание 13 «Потоки платежей: погашение долга. Погасительные фонды»
- •Задание 13 «Потоки платежей: инвестиционные проекты.»
- •Задание 14 «Инвестиционный портфель»
- •Задание 15 «Первичные ценные бумаги»
- •Задание 16 “Финансовый риск. Формирование портфеля”
- •Исходные условия для задач 1,2,3.
- •Исходные условия для задач а, b.
- •Раздел 4
- •ЗадачаI
- •Финансовые функции
- •Задачи, связанные с функцией бс
- •3. Задание с использованием функции чпс
- •Задание с использованием функции кпер
- •Задания с использованием функции ставка
- •Описательная статистика.
- •Описательная статистика Контрольное задание 1.
- •Задание 2. Разработка и анализ эконометрической модели
- •Математические методы исследования экономики (тестовая база)
- •178. Чем меньше разница между страховой суммой и оценкой объекта страхования
- •179. При страховании по системе «дробной части» устанавливаются
- •180. Страхование по системе первого риска предусматривает выплату страхового возмещения
Задача 5.
Найти графоаналитическим методом оптимальное решение задачи нелинейного программирования.
m
axZ
= 3.6x1
– 0.2x12
+ 0.8x2
– 0.2x22
(297)
2x1 + x2 ≥ 10
x12 -10x1 + x2 ≤ 75
x2 ≥ 0
В данной задаче имеется нелинейная целевая функция с нелинейной системой ограничений. Графическая схема позволит определить положение точки оптимума.
Сначала необходимо преобразовать формулу целевой функции так, чтобы получить её графическое отображение. Воспользуемся методом выделения полного квадрата двучлена относительно x1 и x2, разделив левую и правую части формулы на -0.2:
-5Z = x12 -18x1 + x22 – 4x2
Добавим к левой и правой частям уравнения числа, необходимые для выделения полных квадратов двучлена в правой части выражения:
92 и 22 в сумме составляют 85:
85 – 5Z = (x1 – 9)2 + (x2 – 2)2 (298)
В результате получилась формула, позволяющая графически изобразить целевую функцию в виде линии уровня на плоскости X1OX2. Данные линии уровня представляют собой окружности с общим центром в точке O (9;2). Данная точка является точкой абсолютного экстремума целевой функции.
Для определения характера экстремума нужно провести анализ целевой функции на выпуклость/вогнутость. Для этого необходимо определить вторые частные производные и составить из них матрицу:
Z”x1x1 Z”x1x2 = -0.4 0
Z”x2x1 Z”x2x2 0 -0.4
Определим знаки главных миноров данной матрицы.
Главный минор первого порядка -0.4 < 0.
Главный минор второго порядка 0.16 > 0.
Т.к. знаки миноров чередуются, функция Z - строго вогнута. Экстремум вогнутых функций – max, следовательно, в точке О у целевой функции находится абсолютный максимум.
Для построения области допустимых значений преобразуем второе неравенство системы ограничений:
x12 – 10x1 + x2 ≤ 75
x12 – 10x1 + 25 + x2 ≤ 100
(x1 – 5)2 + x2 ≤ 100
(x1 – 5)2 ≤ 100 – x2
Уравнение (x1 – 5)2 = 100 – x2 выразим через переменные x1* и x2*:
x
1*
= x1
– 5
x2* = 100 – x2
Уравнение примет вид: x1*2 = x2*.
В системе координат X1*O*X2* данное уравнение является каноническим уравнением параболы.
Рисунок 165
На рисунке 165 область допустимых значений – ограниченная часть плоскости ABCD. Из полученного графика видно, что точка абсолютного максимума Z лежит внутри ОДР. Следовательно, целевая функция принимает максимальное значение в этой точке:
max Z = Z(O) = Z(9;2) = 17
Задание 6
После нескольких лет эксплуатации оборудование может оказаться в одном из трех состояний:
1) требуется профилактический ремонт;
2) требуется замена отдельных деталей и узлов;
3) требуется капитальный ремонт.
В зависимости от ситуации руководство предприятия может принять следующие решения:
отремонтировать оборудование своими силами, что потребует затрат а;
вызвать специальную бригаду ремонтников, расходы в этом случае составят b;
заменить оборудование новым, реализовав устаревшее по остаточной стоимости.. Совокупные затраты на это мероприятие составят с.
Требуется найти оптимально решение данной проблемы по критерию минимизации затрат с учетом следующих предположений:
а) на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний – q;
б) имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;
в) о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.
-
П1
П2
П3
a
13
9
15
b
20
12
11
c
18
10
14
q
0.3
0.45
0.25
λ = 0.7
Составим платёжную матрицу, в которой Пj – состояния оборудования, Аi – альтернативы принятия решений:
-
П1
П2
П3
А1
-13
-9
-15
А2
-20
-12
-11
А3
-18
-10
-14
Для принятия оптимального решения в случае а). воспользуемся критерием Байеса; в случае б). критерием Лапласа; в случае в). критериями Вальда, Сэвиджа, Гурвица.
а). на основе обобщения опыта эксплуатации аналогичного оборудования определены вероятности наступления соответствующих состояний: q1 = 0.3; q2 = 0.45; q3 = 0.25
Критерий Байеса.
Для каждой альтернативы найдём средний выигрыш: ai = ∑aij×qj
a1 = -11.7 a2 = -14.15 a3 = -13.4
-
П1
П2
П3
ai
А1
-13
-9
-15
-11.7
А2
-20
-12
-11
-14.15
А3
-18
-10
-14
-13.4
qj
0.3
0.45
0.25
Из средних выигрышей выбираем максимальный: max ai = a1 = -11.7 – первая альтернатива оптимальна в случае известных вероятностей наступления событий при выборе решения по критерию Байеса.
б). имеющийся опыт свидетельствует о равной вероятности наступления соответствующих состояний;
Критерий Лапласа.
Для каждой альтернативы найдём средний выигрыш: ai = 1/3∑aij
a1 = -12.3 a2 = -14.3 a3 = -14
-
П1
П2
П3
ai
А1
-13
-9
-15
-12.3
А2
-20
-12
-11
-14.3
А3
-18
-10
-14
-14
Из средних выигрышей выбираем максимальный: max ai = a1 = -12.3 – первая альтернатива оптимальна в случае равной вероятности наступления событий при выборе решения по критерию Лапласа.
в). о вероятностях наступления соответствующих состояний ничего определенного сказать нельзя.
Критерий Вальда.
Для каждой альтернативы определим наихудший исход. di – минимальный элемент строки. Из наихудших исходов выбираем наилучший, т.е. максимальный di.
-
П1
П2
П3
di
А1
-13
-9
-15
-15
А2
-20
-12
-11
-20
А3
-18
-10
-14
-18
max di = d1 = -15 – первая альтернатива оптимальна по критерию Вальда.
Критерий Сэвиджа.
Для каждого столбца находим максимальный элемент βj.
-
П1
П2
П3
А1
-13
-9
-15
А2
-20
-12
-11
А3
-18
-10
-14
βj
-13
-9
-11
Построим матрицу рисков, элементы которой: rij = βj - aij
-
max ri
0
0
4
4
7
3
0
7
5
1
3
5
В матрице рисков в каждой строке найдём максимальный риск, и из них выберем минимальный: min r = r1 = 4 – первая альтернатива оптимальна по критерию Сэвиджа.
Критерий Гурвица.
Для каждой строки находим минимальный di и максимальный βj.
|
П1 |
П2 |
П3 |
di |
βj |
χi |
А1 |
-13 |
-9 |
-15 |
-15 |
-9 |
-13.2 |
А2 |
-20 |
-12 |
-11 |
-20 |
-11 |
-17.3 |
А3 |
-18 |
-10 |
-14 |
-18 |
-10 |
-15.6 |
χi = λ × di + (1 – λ) × βj λ = 0.7
Максимальный из элементов последнего столбца: max χi = χ1 = -13.2 – первая альтернатива оптимальна по критерию Гурвица.
Задача 7.
Выбрать оптимальный режим работы новой системы ЭВМ, состоящей из двух ЭВМ типов А1 и А2. Известны выигрыши от внедрения каждого типа ЭВМ в зависимости от внешних условий, если сравнить со старой системой.
При использовании ЭВМ типов А1 и А2 в зависимости от характера решаемых задач В1 и В2 (долговременные и краткосрочные) будет разный эффект. Предполагается, что максимальный выигрыш соответствует наибольшему значению критерия эффекта от замены вычислительной техники старого поколения на ЭВМ A1 и А2.
Итак, дана матрица игры (табл. 60), где A1, А2 - стратегии руководителя; В1, В2 - стратегии, отражающие характер решаемых на ЭВМ задач.
Таблица 60.
Игрок 2 Игрок 1 |
В1 |
В2 |
i |
А1 |
0,3 |
0,8 |
0,3 |
А2 |
0,7 |
0,4 |
0,4 |
j |
0,7 |
0,8 |
|
Требуется найти оптимальную смешанную стратегию руководителя и гарантированный средний результат , т.е. определить, какую долю времени должны использоваться ЭВМ типов A1 и А2.
2.2 Описание алгоритма решения
Запишем условия в принятых обозначениях:
а11 = 0,3; а12 = 0,8; а21 = 0,7; а22 = 0,4.
Определим нижнюю и верхнюю цены игры:
1 = 0,3; 2 = 0,4; = 0,4; 1=0,7; 2 = 0,8; = 0,7.
Получаем игру без седловой точки, так как
(293)
(294)
Максиминная стратегия руководителя вычислительного центра – А2.
Для этой стратегии гарантированный выигрыш равен = 0,4 (40%) по сравнению со старой системой.
Определим , pl и р2 графическим способом (рис. 166).
Рис. 166. Графическая интерпретация алгоритма решения
Алгоритм решения:
1. По оси абсцисс отложим отрезок единичной длины.
2. По оси ординат отложим выигрыши при стратегии А1.
3. На вертикали в точке 1 отложим выигрыши при стратегии А2.
4. Проводим прямую b11b12, соединяющую точки а11, а21.
5. Проводим прямую b21b22, соединяющую точки а12, а22.
6. Определяем ординату точки пересечения с линий b11b12 и b21b22. Она равна .
7. Определим абсциссу точки пересечения с. Она равна р2, а р1 = l – р2.
Выпишем решение и представим оптимальную стратегию игры:
р1 = 0,375; (2.3)
р2
= 0,625;
(295)
=0,55. (2.5)
Вывод. При установке новой системы ЭВМ, если неизвестны условия решения задач заказчика, на работу ЭВМ А1 должно приходиться 37,5% времени, а на работу ЭВМ А2 - 62,5%. При этом выигрыш составит 55% по сравнению с предыдущей системой ЭВМ.
Задание 8.
