- •С.Н. Астахов Автоматизированные информационные системы расчета основных моделей исследования операций. Казань 2016
- •Раздел 1 26
- •Раздел 1
- •1.1. Причины универсальности математики.
- •2.2. Особенности математических методов, применяемых к решению экономических задач
- •Раздел 2
- •2.1. Квалиметрия и квалиметрические модели.
- •2.1.2 Основы прикладной квалиметрии.
- •2.2. Математическое программирование.
- •2.2.3. Методы и алгоритмы решения задач математического программирования
- •Алгоритм метода Фогеля.
- •Основной алгоритм метода двойного предпочтения.
- •Алгоритм метода северо-западного угла.
- •Алгоритм метода потенциалов.
- •2.2.4. Задачи целочисленного программирования. Метод Гомори.
- •2.2.5. Динамическое программирование
- •2.3.9. Стратегии теории игр
- •2.4. Теория статистических решений (Игры с природой)
- •2. 5. Модели в. В. Леонтьева
- •2.6. Теория массового обслуживания
- •Теперь вернемся к процессам рождения (размножения) и гибели
- •2.7.2. Применение метода Монте-Карло в социально – экономическом моделировании
- •2.7.3. Использование метода Монте Карло для систем массового обслуживания
- •2.8.2. Анализ сетевых графиков.
- •2.8.3. Оптимизация сетевых графиков
- •Посмотрим на составление портфеля из двух рисковых активов
- •Очевидно, что возникает задача выбора оптимального портфеля.
- •2. 10.2. Пример актуарного моделирования в страховании.
- •Построение страховой математической модели оценки профессиональных рисков
- •Размер заработной. Платы, руб.
- •Шкала оценки профессиональной утраты трудоспособности
- •Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель
- •2.11.2. Эконометрические модели
- •Линейная регрессия
- •2.11.3. Оценка значимости коэффициентов модели
- •Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
- •Фиктивные переменные
- •Проблемы гетероскедастичности
- •Теории временных рядов
- •2.11.5. Методы анализа временных рядов
- •Модели тренда
- •Временные ряды и прогнозирование
- •Графические методы анализа временных рядов
- •Пример анализа временных рядов
- •Особенности функционирования программного комплекса сид
- •Раздел 3.
- •Задача 4.
- •Задача 5.
- •Задание 6
- •Проверка гипотезы о показательном распределении
- •Расчет основных показателей системы массового обслуживания
- •Исследование видоизмененной смо
- •Задание 12 “Потоки платежей: аннуитеты”
- •Задание 13 «Потоки платежей: погашение долга. Погасительные фонды»
- •Задание 13 «Потоки платежей: инвестиционные проекты.»
- •Задание 14 «Инвестиционный портфель»
- •Задание 15 «Первичные ценные бумаги»
- •Задание 16 “Финансовый риск. Формирование портфеля”
- •Исходные условия для задач 1,2,3.
- •Исходные условия для задач а, b.
- •Раздел 4
- •ЗадачаI
- •Финансовые функции
- •Задачи, связанные с функцией бс
- •3. Задание с использованием функции чпс
- •Задание с использованием функции кпер
- •Задания с использованием функции ставка
- •Описательная статистика.
- •Описательная статистика Контрольное задание 1.
- •Задание 2. Разработка и анализ эконометрической модели
- •Математические методы исследования экономики (тестовая база)
- •178. Чем меньше разница между страховой суммой и оценкой объекта страхования
- •179. При страховании по системе «дробной части» устанавливаются
- •180. Страхование по системе первого риска предусматривает выплату страхового возмещения
Теории временных рядов
Временной ряд – это некоторая последовательность чисел (измерений) экономического или бизнес-процесса во времени. Его элементы измерены в последовательные моменты времени, обычно через равные промежутки.
Как правило, составляющие временной ряд числа или элементы временного ряда, нумеруют в соответствии с номером момента времени, к которому они относятся. Таким образом, порядок следования элементов временного ряда весьма существен.
Расширенное понятие временного ряда. Понятие временного ряда часто толкуют расширительно. Например, одновременно могут регистрироваться несколько характеристик упомянутого процесса. В этом случае говорят о многомерных временных рядах. Если измерения производятся непрерывно, говорят о временных рядах с непрерывным временем, или случайных процессах. Наконец, текущая переменная может иметь не временной, а какой-нибудь иной характер, например пространственный. В этом случае говорят о случайных полях. Примеры временных рядов. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п. На рис. 155 показан пример временного ряда с объемами перевозок пассажиров авиарейсами за 12 лет в США.
Рисунок 155
На графике видна устойчивая тенденция роста объема перевозок от года к году (тренд). Кроме того, у этого ряда есть сезонные компоненты. Объем перевозок резко возрастает в летние месяцы и снижается в зимние. В качестве циклической компоненты ряда здесь можно выделить повторяющиеся пики снижения перевозок на период праздника Рождества (24 декабря) и т.д. Вполне естественно, что этот ряд в достаточной степени предсказуем. На рис.156 представлен другой ряд, с объемами продаж компьютерной техники.
Рис.156 Объёмы продаж компьютеров
На графике отчетливо видно резкое снижение объема продаж на 146 месяце. Такой скачок называется интервенцией. Модель этого ряда можно построить, исключив определенным способом интервенцию, но сделать прогноз таких резких и неповторяющихся скачков этими методами невозможно.
Временные ряды называются стационарными, если числовые характеристики ряда являются постоянными на любом участке временного ряда. Реально в жизни это не так, но существуют методы, позволяющие преобразовать временной ряд и привести его к стационарному.
2.11.5. Методы анализа временных рядов
Цели анализа временных рядов. При практическом изучении временных радов на основании экономических данных на определенном промежутке времени эконометрист должен сделать выводы о свойствах этого ряда и о вероятностном механизме, порождающем этот ряд. Чаще всего при изучении временных рядов ставятся следующие цели:
Краткое (сжатое) описание характерных особенностей ряда.
Подбор статистической модели, описывающей временной ряд.
Предсказание будущих значений на основе прошлых наблюдений.
Управление процессом, порождающим временной ряд.
На практике эти и подобные цели достижимы далеко не всегда и далеко не в полной мере. Часто этому препятствует недостаточный объем наблюдений из-за ограниченного времени наблюдений. Еще чаще – изменяющаяся с течением времени статистическая структура временного ряда.
Стадии анализа временных рядов. Обычно при практическом анализе временных рядов последовательно проходят следующие этапы:
Графическое представление и описание поведения временного рада.
Выделение и удаление закономерных составляющих временного рада, зависящих от времени: тренда, сезонных и циклических составляющих.
Выделение и удаление низко- или высокочастотных составляющих процесса (фильтрация).
Исследование случайной составляющей временного ряда, оставшейся после удаления перечисленных выше составляющих.
Построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности.
Прогнозирование будущего развития процесса, представленного временным рядом.
Исследование взаимодействий между различными временными радами.
Для решения этих задач существует большое количество различных методов. Из них наиболее распространенными являются следующие:
8. Корреляционный анализ, позволяющий выявить существенные периодические зависимости и их лаги (задержки) внутри одного процесса (автокорреляция) или между несколькими процессами (кросскорреляция).
9. Спектральный анализ, позволяющий находить периодические и квазипериодические составляющие временного ряда.
10. Сглаживание и фильтрация, предназначенные для преобразования временных рядов с целью удаления из них высокочастотных или сезонных колебаний.
11. Модели авторегрессии и скользящего среднего, которые оказываются особенно полезными для описания и прогнозирования процессов, проявляющих однородные колебания вокруг среднего значения.
12. Прогнозирование, позволяющее на основе подобранной модели поведения временного рада предсказывать его значения в будущем.
