- •С.Н. Астахов Автоматизированные информационные системы расчета основных моделей исследования операций. Казань 2016
- •Раздел 1 26
- •Раздел 1
- •1.1. Причины универсальности математики.
- •2.2. Особенности математических методов, применяемых к решению экономических задач
- •Раздел 2
- •2.1. Квалиметрия и квалиметрические модели.
- •2.1.2 Основы прикладной квалиметрии.
- •2.2. Математическое программирование.
- •2.2.3. Методы и алгоритмы решения задач математического программирования
- •Алгоритм метода Фогеля.
- •Основной алгоритм метода двойного предпочтения.
- •Алгоритм метода северо-западного угла.
- •Алгоритм метода потенциалов.
- •2.2.4. Задачи целочисленного программирования. Метод Гомори.
- •2.2.5. Динамическое программирование
- •2.3.9. Стратегии теории игр
- •2.4. Теория статистических решений (Игры с природой)
- •2. 5. Модели в. В. Леонтьева
- •2.6. Теория массового обслуживания
- •Теперь вернемся к процессам рождения (размножения) и гибели
- •2.7.2. Применение метода Монте-Карло в социально – экономическом моделировании
- •2.7.3. Использование метода Монте Карло для систем массового обслуживания
- •2.8.2. Анализ сетевых графиков.
- •2.8.3. Оптимизация сетевых графиков
- •Посмотрим на составление портфеля из двух рисковых активов
- •Очевидно, что возникает задача выбора оптимального портфеля.
- •2. 10.2. Пример актуарного моделирования в страховании.
- •Построение страховой математической модели оценки профессиональных рисков
- •Размер заработной. Платы, руб.
- •Шкала оценки профессиональной утраты трудоспособности
- •Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель
- •2.11.2. Эконометрические модели
- •Линейная регрессия
- •2.11.3. Оценка значимости коэффициентов модели
- •Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
- •Фиктивные переменные
- •Проблемы гетероскедастичности
- •Теории временных рядов
- •2.11.5. Методы анализа временных рядов
- •Модели тренда
- •Временные ряды и прогнозирование
- •Графические методы анализа временных рядов
- •Пример анализа временных рядов
- •Особенности функционирования программного комплекса сид
- •Раздел 3.
- •Задача 4.
- •Задача 5.
- •Задание 6
- •Проверка гипотезы о показательном распределении
- •Расчет основных показателей системы массового обслуживания
- •Исследование видоизмененной смо
- •Задание 12 “Потоки платежей: аннуитеты”
- •Задание 13 «Потоки платежей: погашение долга. Погасительные фонды»
- •Задание 13 «Потоки платежей: инвестиционные проекты.»
- •Задание 14 «Инвестиционный портфель»
- •Задание 15 «Первичные ценные бумаги»
- •Задание 16 “Финансовый риск. Формирование портфеля”
- •Исходные условия для задач 1,2,3.
- •Исходные условия для задач а, b.
- •Раздел 4
- •ЗадачаI
- •Финансовые функции
- •Задачи, связанные с функцией бс
- •3. Задание с использованием функции чпс
- •Задание с использованием функции кпер
- •Задания с использованием функции ставка
- •Описательная статистика.
- •Описательная статистика Контрольное задание 1.
- •Задание 2. Разработка и анализ эконометрической модели
- •Математические методы исследования экономики (тестовая база)
- •178. Чем меньше разница между страховой суммой и оценкой объекта страхования
- •179. При страховании по системе «дробной части» устанавливаются
- •180. Страхование по системе первого риска предусматривает выплату страхового возмещения
Фиктивные переменные
Регрессионные модели являются достаточно гибким инструментом, позволяющим, в частности, оценивать влияние качественных признаков на изучаемую переменную.
Это достигается введением в число факторов так называемых фиктивных переменных, принимающих, как правило, значения 1 или 0 в зависимости от наличия или отсутствия соответствующего признака в очередном наблюдении. С формальной точки зрения фиктивные переменные ничем не отличаются от других факторов. Наиболее сложный вопрос, возникающий при их использовании, – это правильная интерпретация получаемых оценок.
Как правило, независимые переменные в регрессионных моделях имеют «непрерывные» области изменения (национальный доход, уровень безработицы, размер зарплаты и тому подобное). Однако теория не накладывает никаких ограничений на характер факторов, в частности, некоторые переменные могут принимать всего два значения или, в более общей ситуации, дискретное множество значений.
Необходимость рассматривать такие переменные возникает довольно часто в тех случаях, когда требуется принимать во внимание какой-либо качественный признак. С таким примером мы столкнулись ранее, когда рассматривали модель стоимости жилой площади в Казани. В качестве такого признака рассматривалась «этажность»: необходимо было разделить первый, последний и другие этажи.
Есть и другие примеры. Так при исследовании зависимости зарплаты от различных факторов может возникнуть вопрос, влияет ли на ее размер и, если да, то в какой степени, наличие у работника высшего образования. Точно также можно выяснить в какой степени имеются различия в оплате труда между мужчинами и женщинами. Для решения подобных задач в принципе можно оценивать соответствующие уравнения внутри каждой категории, а затем изучать различия между ними, но введение дискретных или группирующих переменных позволяет определить параметры модели сразу по всем категориям. Фиктивные переменные, несмотря на свою внешнюю простоту, являются весьма гибким инструментом при исследовании влияния качественных признаков.
Проблемы гетероскедастичности
Гетероскедастичность – крайне неприятное свойство исходных, когда дисперсия ошибки зависит от номера наблюдения. На графике гетероскедастичность проявляется в том, что с увеличением или уменьшением порядкового номера измерения увеличивается рассеивание измерений около линии тренда. Это может привести к существенным погрешностям оценок коэффициентов уравнения регрессии. Гетероскедастичность возникает тогда, когда объекты, как правило, неоднородны. Существует несколько методов коррекции, решающих проблему гетероскедастичности.
Наиболее эффективный из них – метод взвешенных наименьших квадратов.
Сущность метода чрезвычайно проста. Пусть исходная модель имеет вид:
.
(267)
Тогда, делением каждого элемента системы на значение t мы приходим к другой системе
(268)
где
взвешенная дисперсия;
,
n – число
измерений.
Таким образом, с помощью преобразования мы устраняем гетероскедастичность. Кроме того, логарифмирование исходных данных также в некоторых случаях снижает ошибки определения параметров модели, вызванные гетероскедастичностью.
