- •С.Н. Астахов Автоматизированные информационные системы расчета основных моделей исследования операций. Казань 2016
- •Раздел 1 26
- •Раздел 1
- •1.1. Причины универсальности математики.
- •2.2. Особенности математических методов, применяемых к решению экономических задач
- •Раздел 2
- •2.1. Квалиметрия и квалиметрические модели.
- •2.1.2 Основы прикладной квалиметрии.
- •2.2. Математическое программирование.
- •2.2.3. Методы и алгоритмы решения задач математического программирования
- •Алгоритм метода Фогеля.
- •Основной алгоритм метода двойного предпочтения.
- •Алгоритм метода северо-западного угла.
- •Алгоритм метода потенциалов.
- •2.2.4. Задачи целочисленного программирования. Метод Гомори.
- •2.2.5. Динамическое программирование
- •2.3.9. Стратегии теории игр
- •2.4. Теория статистических решений (Игры с природой)
- •2. 5. Модели в. В. Леонтьева
- •2.6. Теория массового обслуживания
- •Теперь вернемся к процессам рождения (размножения) и гибели
- •2.7.2. Применение метода Монте-Карло в социально – экономическом моделировании
- •2.7.3. Использование метода Монте Карло для систем массового обслуживания
- •2.8.2. Анализ сетевых графиков.
- •2.8.3. Оптимизация сетевых графиков
- •Посмотрим на составление портфеля из двух рисковых активов
- •Очевидно, что возникает задача выбора оптимального портфеля.
- •2. 10.2. Пример актуарного моделирования в страховании.
- •Построение страховой математической модели оценки профессиональных рисков
- •Размер заработной. Платы, руб.
- •Шкала оценки профессиональной утраты трудоспособности
- •Анализ влияния численности занятых на производствах с вредными и опасными условиями труда и получателей страхового обеспечения на актуарную модель
- •2.11.2. Эконометрические модели
- •Линейная регрессия
- •2.11.3. Оценка значимости коэффициентов модели
- •Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
- •Фиктивные переменные
- •Проблемы гетероскедастичности
- •Теории временных рядов
- •2.11.5. Методы анализа временных рядов
- •Модели тренда
- •Временные ряды и прогнозирование
- •Графические методы анализа временных рядов
- •Пример анализа временных рядов
- •Особенности функционирования программного комплекса сид
- •Раздел 3.
- •Задача 4.
- •Задача 5.
- •Задание 6
- •Проверка гипотезы о показательном распределении
- •Расчет основных показателей системы массового обслуживания
- •Исследование видоизмененной смо
- •Задание 12 “Потоки платежей: аннуитеты”
- •Задание 13 «Потоки платежей: погашение долга. Погасительные фонды»
- •Задание 13 «Потоки платежей: инвестиционные проекты.»
- •Задание 14 «Инвестиционный портфель»
- •Задание 15 «Первичные ценные бумаги»
- •Задание 16 “Финансовый риск. Формирование портфеля”
- •Исходные условия для задач 1,2,3.
- •Исходные условия для задач а, b.
- •Раздел 4
- •ЗадачаI
- •Финансовые функции
- •Задачи, связанные с функцией бс
- •3. Задание с использованием функции чпс
- •Задание с использованием функции кпер
- •Задания с использованием функции ставка
- •Описательная статистика.
- •Описательная статистика Контрольное задание 1.
- •Задание 2. Разработка и анализ эконометрической модели
- •Математические методы исследования экономики (тестовая база)
- •178. Чем меньше разница между страховой суммой и оценкой объекта страхования
- •179. При страховании по системе «дробной части» устанавливаются
- •180. Страхование по системе первого риска предусматривает выплату страхового возмещения
Некоторые особенности применения многофакторных регрессионных моделей в эконометрическом анализе. Мультиколлинеарность
В предыдущих разделах были рассмотрены основные вопросы применения регрессионных моделей в эконометрическом анализе.
На практике исследователю нередко приходится сталкиваться с ситуацией, когда полученная им регрессия является «плохой», т.е. t-статистики большинства оценок малы, что свидетельствует о незначимости соответствующих независимых переменных. В то же время F-статистика может быть достаточно большой, что говорит о значимости регрессии в целом. Одна из возможных причин такого явления носит название мультиколлинеарности и возникает при наличии высокой корреляции между факторами.
Одним из условий классической регрессионной модели является предположение о линейной независимости объясняющих переменных. При нарушении этого условия, т.е. когда одна из переменных является линейной комбинацией их других, это называется полной коллинеарностью. В этой ситуации нельзя использовать метод наименьших квадратов (МНК). На практике полная коллинеарность встречается исключительно редко. Гораздо чаще приходится сталкиваться с ситуацией, когда между факторами имеется высокая степень корреляции. Тогда говорят о наличии мультиколлинеарности. В этом случае МНК-оценка (оценка методом наименьших квадратов) формально существует, но обладает «плохими» свойствами.
Мультиколлинеарность может возникать в силу разных причин. Например, несколько независимых переменных могут иметь общий временной тренд, относительно которого они совершают малые колебания. В частности, так может случиться, когда значения одной независимой переменной являются датированными значениями другой.
Выделим некоторые наиболее характерные признаки мультиколлинеарности.
1. Небольшое изменение исходных данных (например, добавление новых наблюдений) приводит к существенному изменению оценок коэффициентов модели.
2. Оценки имеют большие стандартные ошибки, малую значимость, в то время как модель в целом является значимой (высокое значение коэффициента детерминации R2 и соответствующей F-статистики).
3. Оценки коэффициентов имеют неправильные с точки зрения теории знаки или неоправданно большие значения.
Что же делать, если по всем признакам имеется мультиколлинеарность? Однозначного ответа на этот вопрос нет, и среди эконометристов есть разные мнения на этот счет. При столкновении с проблемой мультиколлинеарности может возникнуть естественное желание отбросить «лишние» независимые переменные, которые, возможно, служат ее причиной. Однако следует помнить, что при этом могут возникнуть новые трудности.
Во-первых, не всегда ясно, какие именно переменные являются лишними в указанном смысле. Мультиколлинеарность означает лишь приблизительную линейную зависимость между факторами, но это не всегда выделяет «лишние» переменные.
Во-вторых, во многих ситуациях удаление каких-либо независимых переменных может значительно отразиться на содержательном смысле модели.
И, в-третьих, отбрасывание так называемых существенных переменных, то есть независимых переменных, которые реально влияют на изучаемую зависимую переменную, приводит к смещению коэффициентов модели.
На практике, обычно при обнаружении мультиколлинеарности убирают наименее значимый для анализа фактор, а затем повторяют расчеты.
