Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 04.doc
Скачиваний:
5
Добавлен:
01.07.2025
Размер:
724.48 Кб
Скачать

4.6. Механический и геометрический смысл производной

Обращаясь к рассмотренным ранее задачам, приводящим к понятию производной, можно сформулировать следующие утверждения.

1) Скорость прямолинейного движения точки есть производная пути по времени : . Это механический смысл производной. Поэтому производную любой функции называют скоростью изменения этой функции.

2) Угловой коэффициент невертикальной касательной к непрерывной кривой в точке с абсциссой есть производная , т.е. . Это геометрический смысл производной.

Известно, что уравнение прямой, проходящей через точку с угловым коэффициентом имеет вид: . С учетом этой формулы уравнение касательной к кривой в точке принимает вид:

Нормалью к кривой в данной точке называется прямая, проходящая через данную точку перпендикулярно к касательной в этой точке.

Угловые коэффициенты взаимно перпендикулярных прямых связаны соотношением , откуда . Следовательно, если , то уравнение нормали к кривой в точке можно записать в виде

.

Пример. Написать уравнения касательной и нормали к кривой в точке .

Так как , то угловой коэффициент касательной в указанной точке . Следовательно, уравнение касательной

.

Уравнение нормали .

4.7. Общие правила дифференцирования

Производные любых функций можно найти непосредственно по определению, как показано в п.4.4. Однако каждый раз делать это весьма затруднительно, поэтому для дифференцирования произвольных функций можно воспользоваться таблицей производных элементарных функций и правилами дифференцирования.

Пусть функции и дифференцируемы в точке . Тогда их сумма, разность, произведение и частное также дифференцируемы в точке , причем

Для примера выведем правило дифференцирования произведения двух функций. Пусть . Придадим аргументу произвольное приращение , тогда в результате этого функции получат соответственно приращения :

Таким образом, . При выводе использовано условие дифференцируемости, а, следовательно, и непрерывности функции , в силу чего . В частности, из доказанной формулы вытекает правило:

т.е. постоянный множитель можно выносить за знак производной.

Таблица производных элементарных функций

Замечание. Напомним свойства степеней и корней, используемые при дифференцировании функций:

Приведем примеры нахождения производных.

1) .

2)

4.8. Производная сложной функции

Пусть . Тогда функция будет сложной функцией от x.

Если функция дифференцируема в точке x, а функция дифференцируема в точке u, то тоже дифференцируема в точке x, причем

.

Примеры.

1.

Полагаем , тогда . Следовательно

.

При достаточном навыке промежуточную переменную u не пишут, вводя ее лишь мысленно.

2.

.

4.9. Логарифмическое дифференцирование

Показательно-степенной функцией называется функция вида , где , – дифференцируемые функции и .

Для нахождения производной такой функции ее сначала логарифмируют, а затем дифференцируют полученное равенство.

Логарифмическое дифференцирование применяется также для функций, состоящих из большого числа сомножителей или являющихся отношением произведений нескольких функций.

Примеры.

1. Найти производную функции .

.

2. Найти производную функции .

;

;

.

Замечание. При решении применялись следующие свойства логарифмов: