- •2.1. Нейрон. Нейроцит. Синапс.
- •2.1.2. Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон.
- •2.1.3.Афферентный сигнал. Афферентный нерв. Исполнительные органы. Обратная афферентация (связь).
- •2.1.4. Замкнутая кольцевая цепь рефлексов. Вегетативная (автономная) и анимальная нервная система.
- •2.1.5. Развитие нервной системы. Филогенез нервной системы.
- •2.1.6. Трубчатая нервная система. Цефализация.
- •2.1.7. Развитие отделов мозга: промежуточный, передний, конечный. Кортикализация. Новый мозг.
- •2.1.8. Первая сигнальная система. Вторая сигнальная система.
- •2.1.9. Эмбриогенез нервной системы.
- •2.2. Спинной мозг, medulla spinalis.
- •2.2.1. Развитие спинного мозга.
- •2.2.2. Строение спинного мозга.
- •2.2.3. Корешки спинного мозга. Канатики, стволы, узлы, сегмент спинного мозга.
- •2.2.4. Серое вещество, substantia grisea. Передние рога, боковые рога, задние рога спинного мозга. Внутреннее строение спинного мозга.
- •2.2.5. Белое вещество, substantia alba. Нервный сегмент спинного мозга. Пучки ассоциативных волокон.
- •2.2.6. Пучки ассоциативных волокон заднего канатика спинного мозга и бокового канатика спинного мозга.
- •2.2.7. Пучки ассоциативных волокон переднего канатика спинного мозга.
- •2.2.8. Оболочки спинного мозга. Твердая оболочка, паутинная оболочка, мягкая оболочка спинного мозга.
- •2.2.9. Кровоснабжение спинного мозга. Сосуды спинного мозга.
- •2.3.Головной мозг, encephalon.
- •2.3.1. Верхнелатеральная поверхность головного мозга.
- •2.3.2. Нижняя поверхность полушарий большого мозга. Обонятельные луковицы, тракты ( bulbi olfactorii, tractus olfactorii ).
- •2.3.3. Зрительный перекрест, chiasma opticum. Сосцевидные тела, corpora mamillaria. Нервы на нижней поверхности головного мога.
- •2.2.4. Эмбриогенез головного мозга. Задний мозговой пузырь, rhombencephalon. Средний мозговой пузырь, mesencephalon.
- •2.3.5. Передний мозговой пузырь, prosencephalon. Конечный мозг, telencephalon.
- •2.2.6. Рост и развитие борозд, извилин головного мозга. Масса мозга.
- •2.4. Ромбовидный мозг. Продолговатый мозг, myelencephalon, medulla oblongata.
- •2.4.1. Продолговатый мозг
- •2.4.2.Внутреннее строение моста. Вентральная часть моста и дорсальная часть моста.
- •2.4.6. Мозжечок, cerebellum. Строение мозжечка.
- •2.4.7. Внутреннее строение мозжечка. Ядра мозжечка.
- •2.4.8. Белое вещество мозжечка. Ножки мозжечка (мозжечковые ножки).
- •2.4.9. Перешеек, isthmus rhombencephali.
- •2.5. Четвертый ( IV, 4 ) желудочек, ventriculus qudratus. Стенки, топография четвертого желудочка. Строение четвертого желудочка.
- •2.5.1. IV желудочек
- •2.5.2. Ромбовидная ямка, fossa rhomboidea. Стенки, топография ромбовидной ямки. Строение ромбовидной ямки.
- •2.5.3.Топография серого вещества ромбовидной ямки.
- •2.5.4. Ядра ромбовидной ямки. Ядра черепных нервов. Проекция ядер черепных нервов на ромбовидную ямку.
- •X пара — блуждающий нерв, n. Vagus, имеет три ядра:
- •IX пара — языкоглоточный нерв, n. Glossopharyngeus, также содержит три ядра:
- •V пара — тройничный нерв, n.Trigeminus, имеет четыре ядра:
- •2.6. Средний мозг, mesencephalon.
- •2.6.1.Строение среднего мозга. Топография среднего мозга.
- •2.6.2. Крыша среднего мозга, tectum mesencephali.
- •2.6.3. Ножки мозга, pedunculi cerebri. Водопровод мозга, aqueductus cerebri.
- •2.6.4. Внутреннее строение среднего мозга.
- •2.6.5. Покрышка среднего мозга, tegmentum mesencephali.
- •2.6.6. Черное вещество, substantia nigra. Красное ядро, nucleus ruber. Топография черного вещества. Топография красного ядра.
- •2.6.7. Ретикулярная формация, formatio reticularis. Медиальный продольный пучок, fasciculus longitudinalis medialis.
- •2.7. Передний мозг, prosencephalon.
- •2.7.1. Промежуточный мозг, diencephalon. Таламический мозг, thalamencephalon.
- •Таламический мозг
- •2.7.2. Таламус, thalamus. Строение таламуса. Ядра таламуса. Функции и значение таламуса.
- •2.7.4. Эпиталамус, Epithalamus. Строение эпиталамуса. Шишковидное тело, corpus pineale. Функции и значение эпиталамуса.
- •2.7.5 Метаталамус, metathalamus. Строение метаталамуса. Коленчатые тела. Функции и значение метаталамуса.
- •2.7.6. Гипоталамус, hypothalamus. Серый бугор, tuber cinereum. Сосцевидные тела, corpora mamillaria. Задняя гипоталамическая область.
- •Третий (III, 3) желудочек, ventriculus tertius. Стенки третьего желудочка. Топография третьего желудочка.
- •2.8. Конечный мозг, telencephalon. Полушария, hemispheria cerebri.
- •2.8.1. Мозолистое тело, corpus callosum. Колено мозолистого тела.
- •2.8.2. Свод, fornix. Столбы свода. Прозрачная перегородка.
- •2.8.3. Плащ. Поверхность полушария (плащ). Прозрачная перегородка.
- •2.8.4. Борозды и извилины верхнелатеральной поверхности полушария. Латеральная борозда. Центральная борозда.
- •2.8.5. Борозды и извилины лобной доли. Прецентральная борозда, sulcus precentralis.
- •2.8.6. Борозды и извилины теменной доли. Постцентральная борозда, sulcus postcentralis.
- •2.8.7. Борозды и извилины височной доли. Верхняя и нижняя височная борозда, sulcus temporalis superior и sulcus temporalis inferior.
- •2.8.8. Борозды и извилины затылочной доли, островок. Поперечная затылочная борозда.
- •2.8.9. Борозды и извилины нижней поверхности полушария. Прямая извилина, gyrus rectus. Обонятельная борозда, sulcus olfactorius.
- •2.8.10. Борозды и извилины медиальной поверхности полушария. Борозда мозолистого тела, sulcus corporis callosi.
- •2.9. Строение мозговой коры. Слои мозговой коры.
- •2.9.1. Кора полушарий большого мозга.
- •2.9.2. Обонятельный мозг, rhinencephalon.
- •2.9.3. Боковые желудочки, ventriculi laterales. Стенки боковых желудочков. Строение боковых желудочков.
- •2.9.4. Базальные ядра полушарий. Полосатое тело, coprus striatum. Хвостатое ядро, nucleus caudatus.
- •2.9.5. Стриопаллидарная система. Чечевицеобразное ядро, nucleus lentiformis. Бледный шар, globus pallidus.
- •2.9.1. Лимбическая система. Ограда, claustrum. Миндалевидное тело, corpus amygdaloideum.
- •2.9.7. Белое вещество полушарий. Ассоциативные волокна. Комиссуральные волокна.
- •2.9.8. Проекционные волокна. Пирамидный путь, tractus corticospinalis (pyramidalis).
- •2.9.9. Таламо-кортикальные и корково-таламические волокна, fibrae thalamocorticalis et corticothalamici.
- •2.10. Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).
- •2.10.1. Морфологические основы динамической локализации функций в коре полушарий большого мозга (центры мозговой коры).
- •2.10.2. Кора. Корковые концы анализаторов. Ядро двигательного анализатора.
- •2.10.3. Статический анализатор. Ядро анализатора импульсов от внутренних органов.
- •2.10.4. Корковые концы анализаторов внешнего мира. Ядро слухового анализатора. Ядро зрительного анализатора.
- •2.10.5. Ядро обонятельного анализатора. Ядро вкусового анализатора. Ядро кожного анализатора. Чувствительный гомункулус.
- •2.10.6. Стереогнозия. Первая сигнальная система.
- •2.10.7. Вторая сигнальная система.
- •2.10.8. Корковые концы анализаторов речи. Двигательный анализатор артикуляции речи. Слуховой анализатор устной речи.
- •2.10.9. Двигательный анализатор письменной речи. Зрительный анализатор письменной речи.
- •2.10.10. «Человеческие» признаки строения мозга. Признаки человеческого мозга. Признаки мозга человека.
- •2.11. Оболочки головного мозга.
- •2.11.1. Оболочки головного мозга. Твердая оболочка, dura mater encephali.
- •2.11.2. Серп большого мозга, falx cerebri. Намет мозжечка, tentorium cerebelli.
- •2.11.3. Серп мозжечка, falx cerebelli. Диафрагма седла, diaphragma sellae.
- •2.11.4. Кровеносные сосуды твердой оболочки. Кровоснобжение твердой мозговой оболочки. Нервы (иннервация) твердой мозговой оболочки.
- •2.11.5. Синусы твердой оболочки, sinus durae matris. Поперечный синус, sinus transversus.
- •2.11.6. Верхний сагитальный синус. Затылочный синус, sinus occipitalis. Сток синусов, confluens sinuum. Венозное кольцо.
- •2.11.7. Пещеристый синус, sinus cavernosus. Клиновидный синус, sinus sphenoparietalis. Верхний и нижний каменистые синусы, sinus petrosus superior et inferior.
- •2.11.8. Паутинная оболочка
- •2.11.9. Мягкая оболочка
- •2.11. Спинномозговая жидкость, liquor cerebrospinalis. Кровоснабжение головного мозга. Рентгенологическое исследование центральной нервной системы.
- •2.11.1. Спинномозговая жидкость.
- •2.11.2. Сосуды головного мозга. Кровоснабжение головного мозга. Артерии головного мозга.
- •2.11.3. Вены большого мозга. Отток из головного мозга.
- •2.11.4. Рентгенологическое исследование центральной нервной системы. Энцефалограмма. Вентрикулограмма.
- •2.12.Переферическая нервная система. Аномальные или соматические нервы. Спинномозговые нервы, nn. Spinales.
- •2.12.1.Задние ветви спинномозговых нервов, rami dorsales.
- •2.12.2.Передние ветви спинномозговых нервов, rami ventrales.
- •2.12.3.Шейное сплетение, plexus cervicalis. Кожные ветви шейного сплетения.
- •Кожные ветви шейного сплетения.
- •Мышечные ветви шейного сплетения. Шейная петля, ansa cervicalis. Мышечные ветви.
- •Смешанные ветви шейного сплетения. Диафрагмальный нерв, n. Phrenicus. Топография диафрагмального нерва.
- •2.12.4.Короткие ветви.
- •2.12.5.Длинные ветви плечевого сплетения: n. Musculocutaneus, мышечно-кожный нерв, n. Medianus, срединный нерв.
- •2.12.6.Ветви n. Ulnaris на предплечье и кисти.
- •Лучевой нерв, n. Radialis. Медиальный кожный нерв преплечья, n. Cutaneus antebrachii medialis.
- •2.12.7.Передние ветви грудных нервов, rami ventrales nn. Intercostales. Межреберные нервы, nn. Intercostales.
- •2.12.8.Пояснично-крестцовое сплетение, plexus lumbosacralis. Поясничное сплетение, plexus lumbalis. Ветви поясничного сплетения. Пояснично-крестцовое сплетение
- •Поясничное сплетение
- •2.12.9.Подвздошно-подчревный нерв, n. Iliohypogastricus. Подвздошно-паховый нерв, n. Ilioinguinalis.
- •2.12.10.Бедренно-половой нерв, n. Genitofemoralis. Латеральный кожный нерв бедра, n. Cutaneus femoris lateralis.
- •Бедренный нерв, n. Femoralis. Запирательный нерв, n. Obturatorius.
- •2.12.11.Крестцовое сплетение, plexus sacralis. Короткие ветви кресцового сплетения.
- •Короткие ветви
- •Длинные ветви крестцового сплетения. Седалищный нерв, n. Ischiadicus. Задний кожный нерв бедра, n. Cutaneus femoris posterior.
- •2.12.12.Ветви седалищного нерва. Большеберцовый нерв, n. Tibialis. Ветви седалищного нерва.
- •2.12.13.Общий малоберцовый нерв, n. Peroneus (fibularis) communis.
- •2.12.14.Копчиковое сплетение, plexus coccygeus.
- •2.12.15.Черепных нервов, nn. Craniales (encephalici)
- •2.12.16.Афферентные волокна черепномозговых нервов. Эфферентные волокна черепномозговых нервов.
- •Подъязычный нерв, n. Hypoglossus ( XII пара ). 12 пара черепных нервов.
- •Тройничный нерв ( V пара ), n. Trigeminus. Пятая пара черепных нервов. Тройничный узел, ganglion trigeminale.
- •Ветви тройничного нерва.
- •Первая ветвь тройничного нерва. Глазной нерв, n. Ophthalmicus. Ресничный узел, gandlion ciliare.
- •Вторая ветвь тройничного нерва. Верхнечелюстной нерв, n. Maxillaris. Крылонебный узел, ganglion pterygopalatinum.
- •Третья ветвь тройничного нерва. Нижнечелюстной нерв, n. Mandibularis. Ушной узел, ganglion oticum.
- •А. Мышечные ветви:
- •Б. Чувствительные ветви:
- •Лицевой нерв (VII пара, 7 пара черепных нервов), n. Facialis (n. Intermediofacialis).
- •2.12.17.Ветви лицевого нерва ( n. Facialis ) в лицевом канале. Большой каменистый нерв, n. Petrosus major. Барабанная струна, chorda tympani.
- •Остальные ветви лицевого нерва после выхода из шилососцевидного отверстия ( foramen stylomastoideum ). Промежуточный нерв, n. Intermedius.
- •Преддверно-улитковый нерв (VIII пара, 8 пара черепных нервов), n. Vestibulocochlearis. Части предверноулиткового нерва.
- •Преддверно-улитковый нерв (VIII пара, 8 пара черепных нервов), n. Vestibulocochlearis. Части предверноулиткового нерва.
- •Языкоглоточный нерв (IX пара, 9 пара черепных нервов), n. Glossopharyngeus. Ядра языкоглоточного нерва.
- •Ветви языкоглоточного нерва.
- •Блуждающий нерв ( X пара, 10 пара черепных нервов ), n. Vagus.
- •Ветви блуждающего нерва в головной и шейной части n. Vagus.
- •Ветви блуждающего нерва в грудной и брюшной части n. Vagus. Возвратный гортанный нерв, n. Laryngeus recurrens.
- •Добавочный нерв (XI пара, 11 пара черепных нервов), n. Accessorius.
- •Глазодвигательный нерв (III пара, 3 пара, третья пара черепных нервов), n. Oculomotorius.
- •Блоковой нерв (IV пара, 4 пара, четвертая пара черепных нервов), n. Trochlearis.
- •Отводящий нерв (VI пара, 6 пара, шестая пара черепных нервов), n. Abducens.
- •Обонятельные нервы (I пара, 1 пара, первая пара черепных нервов), nn. Olfactorii.
- •Зрительный нерв (II пара, 2 пара, вторая пара черепных нервов), n. Opticus.
- •Вегетативная ( автономная ) нервная система. Функции вегетативной нервной системы.
- •Вегетативные нервы. Точки выхода вегетативных нервов.
- •Рефлекторная дуга вегетативной нервной системы.
- •Развитие вегетативной нервной системы.
- •Cимпатическая нервная система. Центральный и переферический отдел симпатической нервной системы.
- •Центральный симпатической нервной системы.
- •Переферический отдел симпатической нервной системы.
- •Симпатический ствол. Шейный и грудной отделы симпатического ствола.
- •Поясничный и крестцовый ( тазовый ) отделы симпатического ствола.
- •Парасимпатическая нервная система. Центральная часть ( отдел ) парасимпатической нервной системы.
- •Центры парасимпатической части
- •Периферический отдел парасимпатической нервной системы.
- •Иннервация глаза. Иннервация глазного яблока.
- •Иннервация желез. Иннервация слезной и слюных желез.
- •Иннервация сердца. Иннервация сердечной мышцы. Иннервация миокарда.
- •Иннервация легких. Иннервация бронхов.
- •Иннервация желудочно-кишечного тракта (кишечника до сигмовидной кишки). Иннервация поджелудочной железы. Иннервация печени.
- •Иннервация сигмовидной кишки. Иннервация прямой кишки. Иннервация мочевого пузыря.
- •Иннервация кровеносных сосудов. Иннервация сосудов.
- •Единство вегетативной и центральной нервной системы. Зоны Захарьина — Геда.
- •Проводящие пути. Проводящий путь зрительного анализатора. Проводящий путь зрения.
- •Ядра проводящего пути зрительного анализатора. Ядра зрения. Признаки поражения зрительного тракта.
- •Проводящий путь слухового анализатора. Проводящий путь cлуха.
- •III и IV нейроны слухового пути. Третьи и четвертые нейроны слухового проводящего пути. Ядра слухового анализатора. Признаки поражения слухового пути.
- •Проводящий путь вестибулярного (статокинетического) анализатора. Ядра вестибулярного анализатора. Признаки поражения проводящего пути вестибулярного анализатора.
- •Проводящий путь анализатора обоняния. Проводящий путь обоняния.
- •Ядра проводящего пути обоняния. Признаки поражения обоняния.
- •Проводящий путь анализатора вкуса. Проводящий путь вкуса ( вкусовой чувствительности ).
- •2.1.3. Потенциал покоя
- •2.1.5. Действие электрического тока на возбудимые ткани
- •3.3.Физиология нейрона и синаптических процессов. Медиаторные системы мозга
- •3.3.1.Физиология синаптической передачи в химическом синапсе
- •3.3.2. Нейромедиаторые системы мозга
- •3.3.3. Роль синапсов в формировании временной связи
- •3.4.Физиология вегетативной нервной системы. Рефлекс и физиология движения.
- •3.4.1.Физиология вегетативной нервной системы
- •3.4.2. Рефлекс и физиология движения
- •3.5. Нейроэндокринные регуляции
- •3.7.Лимбическая система мозга.
- •3.8.Функциональная специализация коры больших полушарий мозга.
- •Высшая нервная деятельность
- •3.1 История, предмет и задачи физиологии высшей нервной деятельности
- •3.1.1.История развития взглядов на высшую нервную деятельность
- •3.1.2. Предпосылки возникновения учения и.П. Павлова о физиологии высшей нервной деятельности
- •3.1.3. Предмет и задачи физиологии высшей нервной деятельности
- •3.1.4.Основные понятия и принципы высшей нервной деятельности
- •§ 2. Эволюционные закономерности интегративной деятельности мозга
- •3.2. Функциональная организация мозга и врожденная деятельность организма.
- •3.2.1. Сенсорные системы (анализаторы) мозга
- •3.2.2. Модулирующие системы мозга
- •3.2.3.Основы функциональной организации двигательных систем мозга
- •3.2.4. Концепция нейронной организации рефлекторной дуги
- •3.2.5. Врожденная деятельность организма
- •3.2.6. Безусловные рефлексы и их классификация
- •3.2.7. Особенности организации безусловного рефлекса (инстинкта)
- •3.2.8. Концепция драйва и драйв-рефлексы
- •3.3. Обучение и закономерности условнорефлекторной деятельности, механизмы образования условного рефлекса.
- •3.3.1. Привыкание как стимул-зависимое обучение
- •3.3.2. Условные рефлексы как эффект-зависимое обучение
- •3.3.3. Динамика условнорефлекторной деятельности
- •3.3.4. Механизмы образования условного рефлекса
- •3.3.5. Функциональные основы замыкания временной связи
- •3.3.6. Доминанта и условный рефлекс
- •3.4. Нейрофизиологические основы памяти, обучение и структура поведенческого акта
- •3.4.1. Временная организация памяти
- •3.4.2. Структурно-функциональные основы памяти и обучения
- •3.4.3.Клеточные и молекулярные механизмы обучения и памяти
- •3.4.4. Структура поведенческого акта
- •Рас. 27. Электромиограмма при движении аксолотля от двух противоположных пунктов туловища в области прикрепления левой (1) и правой (2) конечностей.
- •3.4.5. Стадии поведенческого акта
- •3.4.6. Поведение в вероятностной среде
- •§ 4. Нейронные механизмы поведения
- •3.5.Потребности и мотивации.
- •3.5.1. Классификация потребностей
- •3.5.2. Потребности и воспитание
- •3.5.3.Биологическая мотивация
- •3.5.4. Общие свойства различных видов мотивации
- •3.5.5. Мотивация как доминанта
- •3.5.6. Нейроанатомия мотивации
- •3.5.7. Нейрохимия мотивации
- •3.6.Эмоции. Движение.
- •3.6.1. Функции эмоций
- •3.6.2. Физиологическое выражение эмоций
- •3.6.3. Нейроанатомия эмоций
- •3.6.4. Нейрохимия эмоций
- •3.6.5. Движение. Механизмы управления движением
- •3.6.6.Механизмы инициации движения
- •3.7.Функциональные состояния
- •3.7.1. Нейроанатомия функциональных состояний
- •3.7.2. Физиологические индикаторы функциональных состояний
- •3.7.3. Гетерогенность модулирующей системы мозга
- •§ 6. Стресс
- •3.8. Особенности и индивидуальные различия высшей нервной деятельности человека.
- •3.8.1. Слово как сигнал сигналов
- •3.8.2. Речь и ее функции
- •3.8.3. Развитие речи у ребенка
- •3.8.4. Взаимоотношение первой и второй сигнальных систем
- •3.8.5. Речевые функции полушарий
- •3.8.6. Мозг и сознание
- •3.8.7. Индивидуальные различия высшей нервной деятельности человека. Донервные теории индивидуальности
- •3.8.8. Теория и.П. Павлова о типах высшей нервной деятельности
- •3.8.9. Свойства нервной системы и их измерения
- •3.8.10. Темперамент в структуре индивидуальности
3.3.3. Динамика условнорефлекторной деятельности
В процессе жизнедеятельности животных и человека происходит постоянная смена репертуара приобретенных реакций. Одни условные рефлексы закрепляются, другие устраняются, одни рефлексы сменяют другие. Успех индивидуальной адаптации организма к разнообразным условиям его жизни, вея динамика условнорефлекторной деятельности зависят от сложных взаимоотношений между возбудительными и тормозными процессами в головном мозге.
Тормозные процессы в условнорефлекторной деятельности. Заслуга открытия торможения в центральной нервной системе принадлежит И.М. Сеченову. Изучая закономерности условнорефлекторной деятельности мозга, И.П. Павлов установил, что существует два вида торможения — безусловное (внешнее) и условное (внутреннее).
Внешнее (безусловное) торможение есть процесс экстренного ослабления или прекращения отдельных поведенческих реакций при действии раздражителей, поступающих из внешней или внутренней среды. Это торможение возникает без какой-либо предварительной выработки, т. е. является врожденным свойством нервной системы. Внешнее торможение различных условнорефлекторных реакций, возникающее при действии посторонних стимулов, часто встречается в повседневной жизни человека и животных. Причиной могут быть различные условнорефлекторные реакции, а также различные безусловные рефлексы (например, ориентировочный рефлекс, оборонительная реакция — испуг, страх). Однако в большинстве случаев посторонние стимулы вызывают ориентировочную реакцию, что соответственно приводит к прекращению текущей поведенческой деятельности организма. При длительном или повторном действии стимула или его узнавании происходит угашение ориентировочного рефлекса, что выражается в нивелировании тормозного состояния и в восстановлении исходного уровня условнорефлекторной деятельности (гаснущий тормоз).
Другой разновидностью врожденного тормозного процесса является так называемое запредельное торможение. Оно развивается при длительном нервном возбуждении организма. Экспериментально запредельное торможение развивается при воздействиях сильных раздражителей или нескольких несильных, суммарный эффект которых при одновременном и длительном применении превышает предел работоспособности нервных клеток мозга. Это торможение называют также охранительным, полагая, что оно предохраняет нейроны от истощения. Временно выключая активность нервных клеток, оно создает им условия для восстановления нормальной возбудимости и работоспособности. Несомненно, явление запредельного торможения наблюдается тогда, когда сильное волнение вызывает у некоторых людей заторможенное состояние.
Условное (внутреннее) торможение является приобретенным и проявляется в форме задержки, угашения, устранения условных реакций. Условное торможение является активным процессом в нервной системе, развивающимся, как и условное возбуждение, в результате выработки. Такое внутреннее торможение выполняет важнейшие функции перестройки в условнорефлекторной деятельности. Выделяют четыре вида внутреннего торможения: угасательное, дифференцировочное, запаздывательное и условный тормоз. Общим для всех видов внутреннего торможения является их развитие на базе предварительно выработанного условного рефлекса.
Угасательное торможение (угашение условного рефлекса) возникает после отмены подкрепления условного стимула. Условный стимул теряет свое первоначальное значение. Скорость угашения условной связи находится в обратной зависимости от интенсивности условного стимула и силы, биологической значимости подкрепления. Усиление внутреннего (угасательного) торможения может привести к угнетению не только угашаемого рефлекса, но и других, прежде всего близких, однородных условных рефлексов (вторичное угашение). Торможение, лежащее в основе угашения, является важной биологической функцией, так как оно способствует устранению условных рефлексов, ставших уже бесполезными, ненужными. Механизм угасательного торможения, таким образом, снижает активность «ненужных» функциональных связей в мозге. В изменившихся условиях существования организма будут вырабатываться и новые адаптивные реакции.
Дифференцировочное торможение является важным механизмом в деятельности мозга, способствующим различению сигналов. Тонкое различение сигнального раздражителя происходит в результате неподкрепления посторонних стимулов, близких по своим параметрам условному сигналу. Развитие этого вида торможения идет постепенно (в три этапа). Когда на фоне выработанного условного рефлекса применяется дифференцировочный (новый) раздражитель, то часто он тоже вызывает условный ответ, хотя и с меньшим эффектом, чем условный подкрепляемый стимул. Это связано с тем, что дифференцировочный раздражитель, как всякий новый стимул, вызывает ориентировочный рефлекс, который обусловливает внешнее торможение условного ответа (I этап). По мере дальнейшего попеременного применения условного и дифференцировочного раздражителей ориентировочная реакция на сходный раздражитель исчезает, вследствие чего условные реакции на оба стимула выравниваются (II этап). Затем на неподкрепляемый дифференцировочный раздражитель условная реакция угасает (III этап). Дифференцировка (различение) стимулов вырабатывается тем быстрее и легче, чем отдаленнее сходство между раздражителями. При очень близких сигналах дифференцировка может совсем не образоваться в результате первичного дефицита информации, воспринимаемой организмом.
Запаздывательное торможение образуется при выработке запаздывающих и следовых условных рефлексов, когда условный сигнал значительно опережает подкрепление. С помощью этого вида внутреннего торможения рефлекторная реакция может быть приурочена к моменту предъявления подкрепления. Развитие этого торможения происходит во время изолированного (опережающего) действия условного стимула. Постепенно условная реакция смещается во времени ближе к моменту появления подкрепления. Запаздывательное торможение, т. е. способность нервной системы к «экономному» режиму работы, проявляется различно у возбудимых и инертных животных. У возбудимых животных запаздывательное торможение развивается труднее и медленнее.
Условный тормоз развивается в том случае, если условный сигнал в сочетании с каким-либо дополнительным агентом не подкрепляется, а изолированное действие условного стимула подкрепляется. Вскоре условный стимул в комбинации с дополнительным агентом перестает вызывать условную реакцию благодаря развитию условного тормоза. Биологическое значение условного тормоза состоит в уточнении сходства и различия сигналов. Рассматривая варианты внутреннего торможения, П.К. Купалов считал, что запаздывательное торможение и условный тормоз есть, по сути, частные случаи дифференцировочного торможения.
В ответ на многократные или монотонные стимулы непременно развивается внутреннее торможение. Если такая стимуляция продолжается, то наступает сон. Переходный период между бодрствованием и сном назван гипнотическим состоянием. И.П. Павлов разделил гипнотическое состояние на три фазы в зависимости от размеров области коры полушарий, охваченной торможением, и соответствующей реактивности различных мозговых центров в процессе реализации условных рефлексов. Первая из этих фаз называется уравнительной. В это время сильные и слабые стимулы вызывают одинаковые условные ответы. Парадоксальная фаза характеризуется более глубоким сном. В этой фазе слабые раздражители вызывают более интенсивный ответ, чем сильные. Ультрапарадоксальная фаза означает еще более глубокий сон, когда ответ вызывают только слабые стимулы, а сильные приводят к еще большему распространению торможения. За этими тремя фазами следует глубокий сон.
И.П. Павлов считал, что гипнотическое состояние является частичным сном. Однако оказалось, что эта проблема не так проста. Было установлено, что в гипнозе волны электроэнцефалограммы (ЭЭГ) сходны с ЭЭГ бодрствования, а не сна. Выяснилось, что одни люди более подвержены гипнозу, чем другие, а некоторые вовсе не поддаются ему (что говорит о различном соотношении процессов возбуждения и торможения у разных людей). В последние годы получили
распространение теории, согласно которым гипнотическое состояние нельзя приравнивать ни к сну, ни к бодрствованию.
Свойства основных нервных процессов. Неразрывное единство двух противоположных нервных процессов — возбуждения и торможения — составляет фундаментальный механизм всей условнорефлекторной деятельности. Оба нервных процесса участвуют в формировании условного рефлекса, сложным образом взаимодействуя между собой.
Факт распространения (иррадиации) возбуждения по нервной системе давно известен физиологам и клиницистам. Н.Е. Введенский показал, что иррадиация — это основное свойство нервного процесса и что возбуждение, возникшее в одном центре, может распространяться и на другие центры. Так, при развитии эпилептического припадка возбуждение, возникшее в эпилептоидном очаге, постепенно охватывает вею двигательную кору. Эффекторная генерализация проявляется вначале в виде усиления реакций отдельных мышц, а затем в реакцию вовлекается вся скелетная мускулатура и ряд вегетативных изменений. Если возбуждение распространяется и на зрительную область коры, то возникают зрительные галлюцинации. В клинике известны также случаи иррадиации болевых ощущений.
Движение нервных процессов зависит от силы. Как правило, иррадиация (распространение) нервных процессов проявляется при слабой интенсивности возбуждения и торможения, т. е. на стадии слабых, неупроченных временных связей. При достаточной силе нервных процессов они концентрируются, а при чрезмерной силе вновь начинается процесс иррадиации. Дальность распространения нервных процессов от исходного пункта также зависит от их силы: чем интенсивнее нервный процесс в исходном пункте, тем дальше он распространяется и тем сильнее его воздействие на соседние участки мозга.
Процесс формирования классического условного рефлекса проходит три основные стадии. Наиболее ранний период выработки временной связи, стадия прегенерализации, характеризуется значительными изменениями фоновой ритмики электрических потенциалов различных областей мозга, но при этом отсутствуют условные поведенческие реакции. Для этой стадии характерна выраженная концентрация возбуждения, главным образом в проекционных зонах коры условного и безусловного раздражителей. После этой кратковременной фазы концентрации возбуждения следует стадия генерализации условного рефлекса, в основе которой лежит процесс «диффузного» распространения (иррадиации) возбуждения. Во время стадии генерализации условные реакции возникают на сигнальный и другие раздражители (явление афферентной генерализации), а также в интервалах между предъявлениями условного стимула (межсигнальные реакции). Различные биоэлектрические сдвиги (блокада альфа-ритма, десинхронизация, тета-ритм и вызванные потенциалы) широко распространены по коре и подкорковым структурам. Далее по мере подкрепления условного стимула межсигнальные реакции угасают и условный ответ возникает только на сигнальный раздражитель. Это — стадия специализации. На этой фазе выработки временной связи изменения биотоков более ограничены и приурочены в основном к действию условного стимула. Этот процесс обеспечивает дифференцировку, тонкое различение стимулов, специализацию условнорефлекторного навыка.
В случае выработки инструментального рефлекса стадия генерализации четко проявляется в форме «диффузной» двигательной активности. Явление эфферентной генерализации проявляется в целом наборе двигательных реакций на действие одного и того же условного стимула. На стадии специализации временной связи условный стимул запускает узкоспециализированную двигательную активность. Развитие таких процессов можно наблюдать у человека при выработке различных профессиональных навыков (по типу инструментального научения), например, работа на конвейере, печатной машинке, овладение детьми умением письма и др.
Детальное исследование динамических изменений электрической активности мозга проведено в лаборатории М.Н. Ливанова с помощью ЭВМ и многоточечного отведения биопотенциалов различных областей мозга. Была установлена функциональная связь синхронных отношений биопотенциалов мозга человека при реализации двигательных реакций, а также при выполнении умственной деятельности (рис. 16). Исследование дистантной синхронизации (сходство биопотенциалов разных отделов мозга) на животных проведено на модели выработки условного рефлекса (например, сочетание света и болевого раздражения конечности кролика). Было показано, что в период генерализации условного рефлекса наблюдается синхронизация биоэлектрической активности во многих
Рис. 16. Временная корреляция биопотенциалов точек коры головного мозга человека в процессе умственной деятельности (по М.Н. Ливанову, Т.П. Хризман, 1976 ).
А — состояние покоя, Б — через 15 с от начала решения задачи. Кружками обозначены электроды, заштрихованные кружки — точки корреляции
участках коры и подкорковых образованиях (рис. 17). В процессе специализации сфера распространения этих потенциалов значительно сужена и возрастает условнорефлекторный ответ. Необходимым условием образования функциональной связи между корковыми центрами ассоциируемых раздражителей является синхронизация биопотенциалов (в диапазоне тета-ритма). Иначе говоря, условная реакция животного при сочетании света и болевого раздражения конечности возникала при высокой степени сходства биопотенциалов зрительной и двигательной областей коры.
Рис. 17. Динамика синхронизации волн электрокортикограммы кролика в процессе выработки условного рефлекса (по M Л. Ливанову, 1972).
Квадраты — пункты отведения, одинаково заполнены участки, дающие синхронизацию волн от 70 до 100% времени измерения; а — исходный фон, б — после 12 сочетаний условного и безусловного стимулов, в — после 60 сочетаний (выработан условный ответ), г — после 90 сочетаний (условный рефлекс упрочен)
Из вышеизложенного следует, что распространение нервных процессов и их взаимное влияние друг на друга тесно связаны между собой. Изменения возбудимости в различных участках мозга происходят «волнообразно», или, по выражению И.П. Павлова, в коре наблюдается «функциональная мозаика». Конфигурация ансамбля активно действующих зон (пространственно распределенных локусов) не останется застывшей, она меняет свою пространственно-временную конфигурацию. Такую функциональную мозаику очагов возбуждения удается наблюдать по изменениям электрографических показателей активности при многоканальном отведении с использованием ЭВМ и регистрацией на экране осциллографа или телевизора или с помощью тепловизора.
