- •Министерство образования и науки
- •Донецкий национальный университет
- •Химический факультет
- •Кафедра неорганической химии
- •Основы неорганической химии
- •Введение
- •Тема 1. Основные понятия и законы химии
- •Рекомендации к изучению теоретического материала
- •1.2 Примеры решения типовых задач
- •Контрольные вопросы
- •5. Предложите способ определения молекулярной массы с помощью других газовых законов.
- •1.3 Лабораторные работы
- •1.3.1 Взвешивание . Определение воды в кристаллогидрате
- •1.3.2 Очистка веществ
- •Контрольные вопросы
- •1.3.3 Определение молекулярной массы диоксида углерода
- •Контрольные вопросы
- •5. Предложите способ определения молекулярной массы с помощью других газовых законов.
- •Контрольные вопросы
- •1.4 Задачи для самостоятельного решения
- •Тема 2. Растворы. Способы выражения концентрации растворов
- •2.1 Рекомендации к изучению теоретического материала
- •2.2 Примеры решения типовых задач
- •2.3 Лабораторная работа Приготовление растворов
- •Варианты индивидуальных заданий
- •Контрольные вопросы
- •2.4 Задачи для самостоятельного решения
- •Тема 3. Классы неорганических соединений
- •3.1 Рекомендации к изучению теоретического материала
- •3.2 Задания для самостоятельного решения
- •Тема 4. Строение атома и периодический закон д. И. Менделеева
- •4.1 Рекомендации к изучению теоретического материала
- •4.2 Примеры решения типовых задач
- •4.3 Задачи для самостоятельного решения
- •Тема 5. Химическая связь
- •5.1 Рекомендации к изучению теоретического материала
- •5.2 Примеры решения типовых задач
- •5.3 Задания для самостоятельного решения
- •Тема 6. Равновесия в растворах электролитов
- •6.1 Рекомендации к изучению теоретического материала
- •6.1.1 Слабые электролиты. Константа и степень диссоциации
- •6.1.2 Сильные электролиты. Активность ионов
- •6.1.3 Ионное произведение воды. Вычисление рН растворов сильных и слабых кислот и оснований
- •6.1.4 Гетерогенные равновесия. Произведение растворимости
- •6.1.5 Обменные реакции в растворах электролитов. Гидролиз солей
- •6.2 Примеры решения типовых задач
- •6.3 Лабораторные работы
- •6.3.1 Равновесия в растворах электролитов
- •Контрольные вопросы
- •6.3.2 Произведение растворимости
- •Контрольные вопросы
- •6.4 Задачи для самостоятельного решения
- •Тема 7. Окислительно-восстановительные реакции
- •7.1 Рекомендации к изучению теоретического материала
- •7.3 Лабораторная работа Окислительно-восстановительные реакции
- •Контрольные вопросы
- •7.3 Задания для самостоятельного решения
- •Тема 8. Комплексные соединения
- •8.1 Рекомендации к изучениею теоретического материала
- •8.1.1 Состав и номенклатура комплексных соединений
- •8.1.2 Равновесия в растворах комплексных соединений
- •8.2 Примеры решения типовых задач
- •8.3 Лабораторная работа
- •Контрольные вопросы
- •8.4 Задачи для самостоятельного решения
- •Тема 9. Химия элементов
- •9.1 Рекомендации к изучению теоретического материала
- •9.2 Неметаллы
- •Контрольные вопросы
- •9.3 Общая характеристика металлов
- •Контрольные вопросы
- •9.4 Лабораторные работы
- •1. Неметаллы
- •3. Определение свинца методом фотоколориметрии
- •4. Определение жесткости воды
- •Контрольные вопросы
- •5. Йодометрия
- •Варианты индивидуальных заданий Вариант 1
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •1. Смесь хлорида и иодида кальция массой 2 г растворили в воде. Через
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Произведение растворимости малорастворимых веществ
- •Список рекомендуемой литературы
8.3 Лабораторная работа
Ход работы
1. Получить комплексные соединения Cu2+, Ni2+, Zn2+, Cd2+ (исполь-зовать 25%-й водный раствор аммиака; 0,5 М растворы нитратов меди, нике-ля, цинка, кадмия). К полученным растворам добавить раствор щёлочи (2 М). Координационные числа указанных ионов соответственно равны 4, 6, 4, 6.
2. Реакцией обмена получить MgCO3. Из образовавшегося осадка полу-чить аммиачный комплекс Mg2+, добавив избыток (NH4)2CO3. Для опыта ис-пользовать 0,5 М раствор хлорида магния и 1 М раствор карбоната аммония.
3. Реакцией обмена получить осадки гидроксидов Zn2+, Cr3+, Al3+, Sn2+, Pb2+. Для опыта использовать 0,5 М растворы нитратов соответствующих ка-тионов и 2 М раствор гидроксида натрия. Используя раствор гидроксида натрия, получить из гидроксидов комплексные соединения.
4. Поместить в пробирку 23 капли раствора Na2S2O3 и прибавить к нему каплю раствора хлорида железа (III). Моментально появляется тёмное фиолетовое окрашивание, которое постепенно в течение нескольких минут исчезает. Раствор становится бесцветным. Проделать этот опыт, предвари-тельно прибавив к исследуемому раствору 1 каплю раствора CuSO4, при этом фиолетовое окрашивание раствора практически не появляется, а если и поя-вится, то мгновенно исчезает. Чем объясняется появление окраски раствора?
5. Прилить к 23 каплям раствора какой-нибудь соли кобальта (II) 23 капли раствора уксусной кислоты, 5 капель раствора нитрита калия и потереть стеклянной палочкой о стенки пробирки. Что наблюдается?
6. Налить в пробирку 23 капли соли Са2+, прибавить 5 капель буфер-ной смеси (NH3·H2O+NH4Cl) и 23 капли насыщенного раствора К4[Fе(СN)6]. Что образуется? Проверить отношение осадка к уксусной кислоте.
7. Поместить в пробирку 23 капли соли Zn2+, прибавить 23 капли раствора К4[Fе(СN)6] и нагреть смесь до кипения. Что образуется?
8. Поместить в пробирку 23 мл свежеприготовленной соли Мора и прибавить 23 капли К3[Fe(СN)6]. Содержимое разбавить дистиллированной водой. Каков цвет осадка и как он называется?
9. В пробирку внести 23 мл раствора FeCl3 и прибавить 23 капли раствора К4[Fе(СN)6]. Содержимое пробирки разбавить водой. Каков цвет осадка и как он называется? Напишите уравнение реакции.
10. Проверить экспериментально возможность участия комплексных соединений в ОВР. Для исследований использовать: 0,1 М растворы перман-ганата калия, гексацианоферрата (II) калия и 10 %-й раствор серной кислоты.
Контрольные вопросы
1. Что такое комплексное соединение (внешняя и внутренняя сферы, комплексообразователь и лиганды, координационное число и заряд комплексообразователя)?
2. Типы комплексных соединений. Приведите примеры.
3. Номенклатура комплексных соединений. Приведите примеры.
4. Равновесия в растворах комплексных соединений. Чем они характе-ризуются?
5. Какие факторы влияют на смещение этих равновесий?
6. Как влияет природа лиганда на возможность образования комплек-сных соединений в растворе?
8.4 Задачи для самостоятельного решения
1. Назвать комплексные соединения: a) [PdCl(H2O)(NH3)2]Cl;
б) [Co(CN)2(NH3)4]Br; в) [Pt(SO4)(NH3)4]Br2; г) (NH4)2[PtCl4(OH)2];
д) K2[Zn(OH)2(SCN)2]; e) H2[Fe(CN)5NO]; ж) [Cr(PO4)(H2O)4]; и)[CoF3(H2O)3];
к) [Cr(NH3)4(SCN)Cl](NO3)2.
2. Представьте координационные формулы следующих соединений:
2NH4Cl PtCl4, K2C2O4 Cu C2O4, KCl AuCl3, 2Ca(CN)2 Fe(CN)2.
3. Напишите формулы следующих комплексных соединений: а) натрия триоксалатокобальтат (III), б) пентаамминаквоникеля (II) cульфат, в) калия тетратиоцианатодиаквохромат (III), г) гексааммин кобальта (III) тетранитро-диамминкобальтат (III).
4. Каков механизм образования донорно-акцепторной связи? Укажите донор и акцептор в следующих комплексных ионах: [SiF6], [Ni(NH3)6] , [HgI4].
5. Какие из приведенных частиц могут быть лигандами и какие акцеп-торами в координационных соединениях: Co3+, Ni2+, CN, Si4+, NO2, B, NH3?
6. Написать уравнение реакции в молекулярной и ионно-молекулярной форме, а также выражение константы нестойкости КН образующегося комп-лексного иона: [Ag(NH3)2]Cl + K2S2O3 …Назвать это соединение.
7. Написать уравнения реакций, с помощью которых можно после-довательно из CaF2, SiO2, KOH и H2SO4 получить комплексное соединение К2[SiF6]. Назвать это соединение.
8. Напишите уравнения реакций при растворении AgCl в растворах ам-миака и цианида калия. Назовите образующиеся комплексные соединения и напишите для них выражение константы нестойкости.
9. На осаждение ионов Br из раствора комплексной соли [Cr(H2O)6]Br3 израсходовано 0,025 л раствора нитрата серебра с массовой долей AgNO3, равной 10 % ( =1088 кг/м). Какая масса комплексной соли содержалась в растворе? (Ответ: 2,13).
10. Константа неустойчивости иона [Ag(S2O3)2] составляет 3,510. Сколько граммов серебра содержится в виде ионов в 1 л 0,1 М раствора Na3[Ag(S2O3)2], содержащем, кроме того, 25 г Na2S2O3 5H2O. (Ответ: 3,8 1011).
