- •1 Резисторы
- •Содержание
- •Основные характеристики и параметры резисторов[править | править вики-текст]
- •2 Конденсатор
- •Содержание
- •История[править | править вики-текст]
- •Конструкция конденсатора[править | править вики-текст]
- •Свойства конденсатора[править | править вики-текст]
- •Обозначение конденсаторов на схемах[править | править вики-текст]
- •Характеристики конденсаторов[править | править вики-текст] Основные параметры[править | править вики-текст] Ёмкость[править | править вики-текст]
- •Удельная ёмкость[править | править вики-текст]
- •Плотность энергии[править | править вики-текст]
- •Номинальное напряжение[править | править вики-текст]
- •Полярность[править | править вики-текст]
- •Опасность разрушения (взрыва)[править | править вики-текст]
- •Паразитные параметры[править | править вики-текст]
- •Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд[править | править вики-текст]
- •Эквивалентное последовательное сопротивление — Rs[править | править вики-текст]
- •Эквивалентная последовательная индуктивность — Li[править | править вики-текст]
- •Тангенс угла диэлектрических потерь
- •Температурный коэффициент ёмкости (тке)[править | править вики-текст]
- •Диэлектрическая абсорбция[править | править вики-текст]
- •Паразитный пьезоэффект[править | править вики-текст]
- •Самовосстановление[править | править вики-текст]
- •Классификация конденсаторов[править | править вики-текст]
- •3 Малогабаритные реле
- •4 Катушка индуктивности
- •Терминология[править | править вики-текст]
- •Конструкция[править | править вики-текст]
- •Свойства катушки индуктивности[править | править вики-текст]
- •Области пространственного заряда[править | править вики-текст]
- •Выпрямительные свойства p-n перехода[править | править вики-текст]
- •7 Полупроводниковые диоды
- •Содержание
- •3Примечания
- •4Литература
- •5Ссылки Основные характеристики и параметры диодов[править | править вики-текст]
- •Классификация диодов[править | править вики-текст] Типы диодов по назначению[править | править вики-текст]
- •8 Выпрямительные диоды
- •Выпрямительный диод
- •Мостовая схема включения диодов[править | править вики-текст]
- •9 Стабилитроны Стабилитрон
- •Содержание
- •8Примечания
- •Терминология и классификация[править | править вики-текст]
- •Принцип действия[править | править вики-текст]
- •Производство[править | править вики-текст]
- •Области применения[править | править вики-текст]
- •10 Особые типы диодов Типы диодов[править | править вики-текст]
- •Ламповые диоды[править | править вики-текст]
- •Полупроводниковые диоды[править | править вики-текст]
- •Специальные типы диодов[править | править вики-текст]
- •Основные характеристики и параметры диодов[править | править вики-текст]
- •Классификация и система обозначений[править | править вики-текст]
- •Ссср[править | править вики-текст]
- •11 Биполярный транзистор Биполярный транзистор
- •Содержание
- •Устройство и принцип действия[править | править вики-текст]
- •Режимы работы биполярного транзистора[править | править вики-текст]
- •Инверсный активный режим[править | править вики-текст]
- •Режим насыщения[править | править вики-текст]
- •Режим отсечки[править | править вики-текст]
- •Барьерный режим[править | править вики-текст]
- •Схемы включения[править | править вики-текст]
- •Основные параметры[править | править вики-текст]
- •Биполярный свч-транзистор[править | править вики-текст]
- •12 Тиристоры
- •Содержание
- •Устройство и основные виды тиристоров[править | править вики-текст]
- •Вольт-амперная характеристика тиристора[править | править вики-текст]
- •Режимы работы триодного тиристора[править | править вики-текст] Режим обратного запирания[править | править вики-текст]
- •Режим прямого запирания[править | править вики-текст]
- •Двухтранзисторная модель тиристора[править | править вики-текст]
- •Режим прямой проводимости[править | править вики-текст]
- •Эффект dU/dt[править | править вики-текст]
- •Эффект di/dt[править | править вики-текст]
- •Классификация тиристоров[править | править вики-текст]
- •Отличие динистора от тринистора[править | править вики-текст]
- •Отличие тиристора триодного от запираемого тиристора[править | править вики-текст]
- •Симистор[править | править вики-текст]
- •Характеристики тиристоров[править | править вики-текст]
- •13 Полевые транзисторы Полевой транзистор
- •Содержание
- •5См. Также
- •6Примечания
- •7Литература История создания полевых транзисторов[править | править вики-текст]
- •Классификация полевых транзисторов[править | править вики-текст]
- •Транзисторы с управляющим p-n-переходом[править | править вики-текст]
- •Транзисторы с изолированным затвором (мдп-транзисторы)[править | править вики-текст]
- •Схемы включения полевых транзисторов[править | править вики-текст]
- •Области применения полевых транзисторов[править | править вики-текст]
- •14 Свето и фотоприборы
- •Содержание
- •10См. Также
- •11Примечания
- •12Ссылки Принцип работы[править | править вики-текст]
- •История[править | править вики-текст]
- •Характеристики[править | править вики-текст]
- •Светодиоды в электрической схеме[править | править вики-текст]
- •Содержание
- •3Литература
- •4Ссылки Классификация[править | править вики-текст]
- •Использование[править | править вики-текст]
- •Механическое воздействие[править | править вики-текст]
- •Гальваническая развязка[править | править вики-текст]
- •Оптопары[править | править вики-текст]
- •Свойства и характеристики оптопар[править | править вики-текст]
- •Шумы транзисторной оптопары[править | править вики-текст]
- •Типы оптореле[править | править вики-текст]
- •Примеры применения оптореле[править | править вики-текст]
- •Неэлектрическая передача[править | править вики-текст]
- •Содержание
- •4См. Также
- •5Примечания
- •6Литература Конструкция[править | править вики-текст]
- •Содержание
- •4См. Также
- •5Примечания Описание[править | править вики-текст]
- •Параметры и характеристики фотодиодов[править | править вики-текст]
- •Классификация[править | править вики-текст]
- •15 Уселительный каскад
- •Содержание
- •5См. Также
- •6Ссылки Описание[править | править вики-текст]
- •Простейший усилительный каскад с общим эмиттером[править | править вики-текст]
- •Режим работы каскада[править | править вики-текст]
- •Входное и выходное сопротивления каскада[править | править вики-текст]
- •Усиление сигнала[править | править вики-текст]
- •Усилительный каскад с общим эмиттером[править | править вики-текст]
- •Переключательный каскад с общим эмиттером[править | править вики-текст]
- •16) Усилительный каскад на полевом транзисторе
- •17) Операционный усилитель
- •История[править | править вики-текст]
- •Обозначения[править | править вики-текст]
- •Основы функционирования[править | править вики-текст]
- •Питание[править | править вики-текст]
- •Простейшее включение оу[править | править вики-текст]
- •Идеальный операционный усилитель[править | править вики-текст]
- •Простейший усилитель на оу[править | править вики-текст]
- •18) Схемы на операционных усилителях Схемы на операционных усилителях.
- •19) Избирательные уселители на оу
- •Електронные генераторы
Паразитный пьезоэффект[править | править вики-текст]
Многие керамические материалы, используемые в качестве диэлектрика в конденсаторах (например, титанат бария, обладающий очень высокой диэлектрической проницаемостью в не слишком сильных электрических полях) проявляют пьезоэффект — способность генерировать напряжение на обкладках при механических деформациях. Это характерно для конденсаторов с пьезоэлектрическими диэлектриками. Пьезоэффект ведёт к возникновению электрических помех, в устройствах, где использованы такие конденсаторы при воздействии акустического шума или вибрации на конденсатор. Это нежелательное явление иногда называют «микрофонным эффектом».
Также подобные диэлектрики проявляют и обратный пьезоэффект — при работе в цепи переменного напряжения происходит знакопеременная деформация диэлектрика, генерирующая акустические колебания, порождающие дополнительные электрические потери в конденсаторе.
Самовосстановление[править | править вики-текст]
Конденсаторы с металлизированным электродом (бумажный и пленочный диэлектрик) обладают важным свойством самовосстановления (англ. self-healing, cleaning) электрической прочности после пробоя диэлектрика. Механизм самовосстановления заключается в отгорании металлизации электрода после локального пробоя диэлектрика посредством микродугового электрического разряда.
Классификация конденсаторов[править | править вики-текст]
Слюдяной герметичный конденсатор в металлостеклянном корпусе типа «СГМ» для навесного монтажа
Основная классификация конденсаторов проводится по типу диэлектрика в конденсаторе. Тип диэлектрика определяет основные электрические параметры конденсаторов: сопротивление изоляции, стабильность ёмкости, величину потерь и др.
По виду диэлектрика различают:
Конденсаторы вакуумные (между обкладками находится вакуум).
Конденсаторы с газообразным диэлектриком.
Конденсаторы с жидким диэлектриком.
Конденсаторы с твёрдым неорганическим диэлектриком: стеклянные (стеклоэмалевые, стеклокерамические, стеклоплёночные),слюдяные, керамические, тонкослойные из неорганических плёнок.
Конденсаторы с твёрдым органическим диэлектриком: бумажные, металлобумажные, плёночные, комбинированные — бумажноплёночные, тонкослойные из органических синтетических плёнок.
Электролитические и оксидно-полупроводниковые конденсаторы. Такие конденсаторы отличаются от всех прочих типов прежде всего большой удельной ёмкостью. В качестве диэлектрика используется оксидный слой на металлическом аноде. Вторая обкладка (катод) — это или электролит (в электролитических конденсаторах), или слой полупроводника (в оксидно-полупроводниковых), нанесённый непосредственно на оксидный слой. Анод изготовляется, в зависимости от типа конденсатора, из алюминиевой, ниобиевой или танталовой фольги или спечённого порошка. Время наработки на отказ типичного электролитического конденсатора 3000—5000 часов при максимально допустимой температуре, качественные конденсаторы имеют время наработки на отказ не менее 8000 часов при температуре 105 °С[6]. Рабочая температура — основной фактор, влияющий на продолжительность срока службы конденсатора. Если нагрев конденсатора незначителен из-за потерь в диэлектрике, обкладках и выводах, (например, при использовании его во времязадающих цепях при небольших токах или в качестве разделительных), можно принять, что интенсивность отказов снижается вдвое при снижении рабочей температуры на каждые 10 °C вплоть до +25 °C. При работе конденсаторов в импульсных сильноточных цепях (например, в импульсных источниках питания) такая упрощённая оценка надёжности конденсаторов некорректна и расчёт надёжности более сложен[7].
Твердотельные конденсаторы — вместо традиционного жидкого электролита используется специальный токопроводящий органический полимер или полимеризованный органический полупроводник. Время наработки на отказ ~50000 часов при температуре 85°С. ЭПС меньше чем у жидко-электролитических и слабо зависит от температуры. Не взрываются.
Керамический подстроечный конденсатор
Кроме того, конденсаторы различаются по возможности изменения своей ёмкости:
Постоянные конденсаторы — основной класс конденсаторов, не меняющие своей ёмкости (кроме как в течение срока службы).
Переменные конденсаторы — конденсаторы, которые допускают изменение ёмкости в процессе функционирования аппаратуры. Управление ёмкостью может осуществляться механически, электрическим напряжением (вариконды, варикапы) и температурой (термоконденсаторы). Применяются, например, в радиоприёмниках для перестройки частоты резонансного контура.
Подстроечные конденсаторы — конденсаторы, ёмкость которых изменяется при разовой или периодической регулировке и не изменяется в процессе функционирования аппаратуры. Их используют для подстройки и выравнивания начальных ёмкостей сопрягаемых контуров, для периодической подстройки и регулировки цепей схем, где требуется незначительное изменение ёмкости.
В зависимости от назначения можно условно разделить конденсаторы на конденсаторы общего и специального назначения. Конденсаторы общего назначения используются практически в большинстве видов и классов аппаратуры. Традиционно к ним относят наиболее распространённые низковольтные конденсаторы, к которым не предъявляются особые требования. Все остальные конденсаторы являются специальными. К ним относятся высоковольтные, импульсные, помехоподавляющие,дозиметрические, пусковые и другие конденсаторы.
Также различают конденсаторы по форме обкладок: плоские, цилиндрические, сферические и другие.
