- •1 Резисторы
- •Содержание
- •Основные характеристики и параметры резисторов[править | править вики-текст]
- •2 Конденсатор
- •Содержание
- •История[править | править вики-текст]
- •Конструкция конденсатора[править | править вики-текст]
- •Свойства конденсатора[править | править вики-текст]
- •Обозначение конденсаторов на схемах[править | править вики-текст]
- •Характеристики конденсаторов[править | править вики-текст] Основные параметры[править | править вики-текст] Ёмкость[править | править вики-текст]
- •Удельная ёмкость[править | править вики-текст]
- •Плотность энергии[править | править вики-текст]
- •Номинальное напряжение[править | править вики-текст]
- •Полярность[править | править вики-текст]
- •Опасность разрушения (взрыва)[править | править вики-текст]
- •Паразитные параметры[править | править вики-текст]
- •Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд[править | править вики-текст]
- •Эквивалентное последовательное сопротивление — Rs[править | править вики-текст]
- •Эквивалентная последовательная индуктивность — Li[править | править вики-текст]
- •Тангенс угла диэлектрических потерь
- •Температурный коэффициент ёмкости (тке)[править | править вики-текст]
- •Диэлектрическая абсорбция[править | править вики-текст]
- •Паразитный пьезоэффект[править | править вики-текст]
- •Самовосстановление[править | править вики-текст]
- •Классификация конденсаторов[править | править вики-текст]
- •3 Малогабаритные реле
- •4 Катушка индуктивности
- •Терминология[править | править вики-текст]
- •Конструкция[править | править вики-текст]
- •Свойства катушки индуктивности[править | править вики-текст]
- •Области пространственного заряда[править | править вики-текст]
- •Выпрямительные свойства p-n перехода[править | править вики-текст]
- •7 Полупроводниковые диоды
- •Содержание
- •3Примечания
- •4Литература
- •5Ссылки Основные характеристики и параметры диодов[править | править вики-текст]
- •Классификация диодов[править | править вики-текст] Типы диодов по назначению[править | править вики-текст]
- •8 Выпрямительные диоды
- •Выпрямительный диод
- •Мостовая схема включения диодов[править | править вики-текст]
- •9 Стабилитроны Стабилитрон
- •Содержание
- •8Примечания
- •Терминология и классификация[править | править вики-текст]
- •Принцип действия[править | править вики-текст]
- •Производство[править | править вики-текст]
- •Области применения[править | править вики-текст]
- •10 Особые типы диодов Типы диодов[править | править вики-текст]
- •Ламповые диоды[править | править вики-текст]
- •Полупроводниковые диоды[править | править вики-текст]
- •Специальные типы диодов[править | править вики-текст]
- •Основные характеристики и параметры диодов[править | править вики-текст]
- •Классификация и система обозначений[править | править вики-текст]
- •Ссср[править | править вики-текст]
- •11 Биполярный транзистор Биполярный транзистор
- •Содержание
- •Устройство и принцип действия[править | править вики-текст]
- •Режимы работы биполярного транзистора[править | править вики-текст]
- •Инверсный активный режим[править | править вики-текст]
- •Режим насыщения[править | править вики-текст]
- •Режим отсечки[править | править вики-текст]
- •Барьерный режим[править | править вики-текст]
- •Схемы включения[править | править вики-текст]
- •Основные параметры[править | править вики-текст]
- •Биполярный свч-транзистор[править | править вики-текст]
- •12 Тиристоры
- •Содержание
- •Устройство и основные виды тиристоров[править | править вики-текст]
- •Вольт-амперная характеристика тиристора[править | править вики-текст]
- •Режимы работы триодного тиристора[править | править вики-текст] Режим обратного запирания[править | править вики-текст]
- •Режим прямого запирания[править | править вики-текст]
- •Двухтранзисторная модель тиристора[править | править вики-текст]
- •Режим прямой проводимости[править | править вики-текст]
- •Эффект dU/dt[править | править вики-текст]
- •Эффект di/dt[править | править вики-текст]
- •Классификация тиристоров[править | править вики-текст]
- •Отличие динистора от тринистора[править | править вики-текст]
- •Отличие тиристора триодного от запираемого тиристора[править | править вики-текст]
- •Симистор[править | править вики-текст]
- •Характеристики тиристоров[править | править вики-текст]
- •13 Полевые транзисторы Полевой транзистор
- •Содержание
- •5См. Также
- •6Примечания
- •7Литература История создания полевых транзисторов[править | править вики-текст]
- •Классификация полевых транзисторов[править | править вики-текст]
- •Транзисторы с управляющим p-n-переходом[править | править вики-текст]
- •Транзисторы с изолированным затвором (мдп-транзисторы)[править | править вики-текст]
- •Схемы включения полевых транзисторов[править | править вики-текст]
- •Области применения полевых транзисторов[править | править вики-текст]
- •14 Свето и фотоприборы
- •Содержание
- •10См. Также
- •11Примечания
- •12Ссылки Принцип работы[править | править вики-текст]
- •История[править | править вики-текст]
- •Характеристики[править | править вики-текст]
- •Светодиоды в электрической схеме[править | править вики-текст]
- •Содержание
- •3Литература
- •4Ссылки Классификация[править | править вики-текст]
- •Использование[править | править вики-текст]
- •Механическое воздействие[править | править вики-текст]
- •Гальваническая развязка[править | править вики-текст]
- •Оптопары[править | править вики-текст]
- •Свойства и характеристики оптопар[править | править вики-текст]
- •Шумы транзисторной оптопары[править | править вики-текст]
- •Типы оптореле[править | править вики-текст]
- •Примеры применения оптореле[править | править вики-текст]
- •Неэлектрическая передача[править | править вики-текст]
- •Содержание
- •4См. Также
- •5Примечания
- •6Литература Конструкция[править | править вики-текст]
- •Содержание
- •4См. Также
- •5Примечания Описание[править | править вики-текст]
- •Параметры и характеристики фотодиодов[править | править вики-текст]
- •Классификация[править | править вики-текст]
- •15 Уселительный каскад
- •Содержание
- •5См. Также
- •6Ссылки Описание[править | править вики-текст]
- •Простейший усилительный каскад с общим эмиттером[править | править вики-текст]
- •Режим работы каскада[править | править вики-текст]
- •Входное и выходное сопротивления каскада[править | править вики-текст]
- •Усиление сигнала[править | править вики-текст]
- •Усилительный каскад с общим эмиттером[править | править вики-текст]
- •Переключательный каскад с общим эмиттером[править | править вики-текст]
- •16) Усилительный каскад на полевом транзисторе
- •17) Операционный усилитель
- •История[править | править вики-текст]
- •Обозначения[править | править вики-текст]
- •Основы функционирования[править | править вики-текст]
- •Питание[править | править вики-текст]
- •Простейшее включение оу[править | править вики-текст]
- •Идеальный операционный усилитель[править | править вики-текст]
- •Простейший усилитель на оу[править | править вики-текст]
- •18) Схемы на операционных усилителях Схемы на операционных усилителях.
- •19) Избирательные уселители на оу
- •Електронные генераторы
Устройство и принцип действия[править | править вики-текст]
Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.
В первых транзисторах в качестве полупроводникового материала использовался металлический германий. В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.
Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B(Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты[1].
Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое электрическое сопротивление. Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение).
В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).
Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико[2]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.
