- •Министерство образования Российской Федерации Пензенский государственный университет
- •Г. Н. Мальцева
- •Коррозия и защита оборудования от коррозии
- •Учебное пособие
- •Пенза 2001
- •Введение
- •1 Классификация процессов коррозии
- •2 Электрохимическая коррозия
- •2.L Возникновение электродного потенциала
- •Равновесные и неравновесные электродныепотенциалы
- •Строение двойного электрическогослоя
- •2.4. Потенциал нулевого заряда
- •Термодинамика коррозионных электрохимическихпроцессов
- •Коррозионные гальванические элементы и электродныереакции
- •Диаграмма состояния системы металл –вода
- •Механизм растворенияметаллов
- •Поляризация электродныхпроцессов
- •Анодный процесс электрохимической коррозии и пассивностьметаллов
- •Катодный процесс электрохимической коррозииметаллов
- •Расчет скорости электрохимической коррозии
- •Термодинамика и эдс коррозионногопроцесса
- •Графический расчет скорости коррозионногопроцесса
- •Контролирующий процесс коррозииметаллов
- •Показатели электрохимической коррозииметаллов
- •Влияние различных факторов на скорость электрохимическойкоррозии
- •Внутренние факторыкоррозии
- •Внешние факторыкоррозии
- •Влияние кислотности среды
- •Влияние конструктивных особенностей аппаратов на коррозионныйпроцесс
- •Влияние механических факторов на коррозионныйпроцесс
- •Коррозия металлов в различныхусловиях
- •Атмосфернаякоррозия
- •Подземнаякоррозия
- •Морскаякоррозия
- •Коррозия в расплавленныхсолях
- •Биохимическаякоррозия
- •Локальнаякоррозия
- •Межкристаллитнаякоррозия
- •Точечная (питтинговая)коррозия
- •Контактнаякоррозия
- •Щелеваякоррозия
- •Химическаякоррозия
- •Газоваякоррозия
- •Химическая коррозия внеэлектролитах
- •Классификация методов защиты конструкций откоррозии
- •Коррозионностойкие и жаростойкие конструкционныематериалы
- •Характеристика коррозионной стойкостиметаллов
- •Коррозионностойкое легированиеметаллов
- •Жаростойкое легированиеметаллов
- •Классификация коррозионноустойчивыхсплавов
- •Коррозионностойкие сплавы на основежелеза
- •Коррозионная стойкость медныхсплавов
- •Коррозионная стойкость алюминиевыхсплавов
- •Поведение металов и сплавов в агрессивных химическихсре-
- •Неметаллические конструкционные материал. Процессыста- рения
- •Металлические защитныепокрытия
- •Классификация металлическихпокрытий
- •Гальваническиепокрытия
- •Диффузионные, горячие, металлизационные и плакированныепокрытия
- •Неметаллические защитныепокрытия
- •Лакокрасочныепокрытия
- •Оксидные и фосфатные защитныепленки
- •Эмалевыепокрытия
- •Покрытия смолами, полимерами ирезиной
- •Защита металлов от коррозии уменьшением агрессивности коррозионнойсреды
- •Обработка коррозионнойсреды
- •Ингибиторыкоррозии
- •13 Электрохимическая защита
- •Классификация защиты подземныхсооружений
- •Электродренажнаязащита
- •Протекторнаязащита
- •Катодная и анодная защита внешнимтоком
- •14. Методы исследования и контроля коррозионных процессов
- •Классификация методов коррозионныхисследований
- •Критерии оценки коррозионныхэффектов
- •Методы коррозионныхиспытаний
- •Мониторинг коррозионныхпроцессов
Оксидные и фосфатные защитныепленки
Оксидирование стали
Естественные оксидные пленки образуются на поверхности металлов под влиянием кислорода воздуха. Такие пленки имеют незначительную тол- щину и поэтому не могут служить надежной защитой от коррозии.
Оксидные пленки большой толщины можно получить искусственным путем. Такие пленки могут защищать от коррозии. Оксидирование может осуществляться паротермическим, химическим и электрохимическим спосо- бами.
Оксидирование черных металлов нашло широкое применение в про- мышленности для защиты от атмосферной коррозии. Оксидную пленку на стали можно получить электрохимическим окислением в электролитах, пу- тем химической обработки в кислых или щелочных окислительных раство- рах, а также нагревом в атмосфере водяного пара. Наибольшее распростра- нение в промышленности получили химические методы щелочного и паро- термического оксидирования стали.
Паротермическое оксидирование производится в токе перегретого во- дяного пара при температуре 600С. При этом образованная оксидная пленка состоит в основном из чистого магнетита Fe3O4.
Щелочное оксидирование проводят в щелочном нитрито-нитратном растворе состава (г/л):
гидроксиднатрия - 700; нитритнатрия -200;нитратнатрия - 50.
Оксидирование деталей ведут при температуре 136-142С в течение 0,5-1,0 ч, предварительно проводят операции обезжиривания и травления по- верхности.
В растворе гидроксида натрия при достаточно высокой температуре железо на поверхности растворяется с выделением водорода и образованием гипоферрит-анионов:
2–
Fe + 2OH–=FeO2 +H2.
3
2
В присутствии окислителей NO–и NO–– 2–
образуются также и феррит-
–
анионы FeO2. При наличии анионов FeO2
присутствуют также катионы Fe2+и Fe3+:
иFeO2 в щелочномрастворе
– 3+ –
2– 2+ –
FeO2 + 2H2O=Fe +4OH;FeO2+ 2H2O=Fe + 4OH.При достаточно высокой концентрации Fe2+и Fe3+образуется оксидная пленка, состоящая, главным образом, из магнетита Fe3O4.
После оксидирования изделия тщательно промывают горячей водой для удаления следов щелочи, обрабатывают в мыльном растворе для пасси- вирования, сушат и погружают в ванну с машинным или вазелиновым мас- лом, подогретым для лучшего заполнения пор до 100………-150С…….
Оксидирование алюминия и его сплавов
Оксидирование алюминия и его сплавов осуществляют химическим или электрохимическим методами.
В результате химического оксидирования получают малопрочные пленки толщиной 1-2 мкм, поэтому этот процесс распространен в промыш- ленности недостаточно широко.
Электрохимическое оксидирование алюминия и его сплавов (анодиро- вание) применяется для защиты изделий от коррозии, для декоративной от- делки, придания электроизоляционных свойств, а также в целях подготовки под окраску. Анодирование осуществляется в сернокислых, хромовокислых и щавелевокислых электролитах. Анодирование в щавелевой кислоте при- меняется для получения оксидной пленки, обладающей электроизоляци- онными свойствами. В промышленности нашло широкое применение ано- дированиевсернойкислотесконцентрацией200г/л.Процессведутпри
анодной плотности тока 80-250 А/м2, комнатной температуре в течение 0,5 ч.Изделия завешивают на анодную штангу, а катодом служит листовой свинец.
Для повышения защитных свойств оксидная пленка наполняется со- единениями хрома путем обработки ее в растворе, содержащем 100 г/л хро- мата калия и 18 г/л карбоната калия, в течение 0,1-0,2 ч при температуре 90-95°С с последующей промывкой в воде и сушкой.
Для повышения качества отделки изделий применяют окрашивание оксидных пленок неорганическими соединениями или органическими краси- телями. Например, для получения синего цвета (берлинская лазурь) изделие с оксидной пленкой обрабатывается в растворе гексацианоферрата (II) калия (10-15 г/л) в течение 0,1-0,2 ч, затем в растворе хлорида железа (III). Для ок- рашивания под цвет золота применяют раствор, содержащий 1,0 г/л оранже- вого красителя, 0,1 г/л желтого и 0,1 г/л черного (кислотного). Окрашивание производят при температуре 20C. Неорганические соединения дают более светостойкую окраску, чем органические, но при использовании органиче- ских красителей можно получить большее количество цветов иоттенков.
Фосфатирование стали
Фосфатирование – процесс получения на поверхности стали пленки фосфорнокислой соли железа и марганца. Толщина пленки, в зависимости от условий ее получения, колеблется от 5 до
мкм. Цвет черный илисветло-серый.
Фосфатная пленка обладает высокими диэлектрическими свойствами, устойчива в керосине, смазочных маслах, жаростойка и морозостойка.
Механизм защиты железа фосфатной пленкой сводится к механичес- кому экранированию, т. е. изоляции поверхности железа от внешней корро- зионной среды. Вследствие пористости фосфатных пленок их защитное дей- ствие недостаточное, поэтому они, в основном, используются как грунт под окраску.
Для повышения защитных свойств фосфатной пленки ее обрабатывают пассивирующим хроматным раствором, содержащим 60-80 г/л хромата на- трия или калия, при температуре 70-80С в течение 10-15с или пропитывают смазочными маслами при температуре 100-120С.
Исходная соль для фосфатирования – препарат «мажеф» (сокращен- ное от марганца-железа-фосфата), который состоит из дигидроортофосфатов железа Fe(H2PO4)2и марганца Mn(H2PO4)2.
В растворе дигидроортофосфатов образуются катионы этих металлов и анионы в результате диссоциации:
Me(H2PO4)2= Me2++ 2(H2PO4); (H2PO4)= H++ (HPO4)2; (HPO4)2= H++ (PO4)3.
Соли двух- и трехзамещенных фосфатов марганца и железа малорас- творимые, поэтому в процессе диссоциации соли «мажефа» в слое, гранича- щем с поверхностью изделия, образуется пересыщенный раствор этих солей, из которого происходит кристаллизация на поверхности железа фосфатного покрытия по реакциям:
3
Me2++ (HPO4)2= MeHPO4; 3Me2++2PO4 =Me3(PO4)2,где Ме – железо или марганец.
Фосфатирование производят в растворе, содержащем 30 г/лпрепарата
«мажеф» при температуре 90-98С.
Процесс получения фосфатного покрытия на поверхности стальных изделий можно интенсифицировать, добавляя в раствор для фосфатирования окислители (нитрат натрия), растворы солей металлов, более благородных, чем фосфатируемые (например оксид меди). Для ускоренного фосфатирова- ния можно рекомендовать раствор, содержащий 30 г/л препарата «мажеф» и 0,3 г/л оксида меди.
