- •Министерство образования Российской Федерации Пензенский государственный университет
- •Г. Н. Мальцева
- •Коррозия и защита оборудования от коррозии
- •Учебное пособие
- •Пенза 2001
- •Введение
- •1 Классификация процессов коррозии
- •2 Электрохимическая коррозия
- •2.L Возникновение электродного потенциала
- •Равновесные и неравновесные электродныепотенциалы
- •Строение двойного электрическогослоя
- •2.4. Потенциал нулевого заряда
- •Термодинамика коррозионных электрохимическихпроцессов
- •Коррозионные гальванические элементы и электродныереакции
- •Диаграмма состояния системы металл –вода
- •Механизм растворенияметаллов
- •Поляризация электродныхпроцессов
- •Анодный процесс электрохимической коррозии и пассивностьметаллов
- •Катодный процесс электрохимической коррозииметаллов
- •Расчет скорости электрохимической коррозии
- •Термодинамика и эдс коррозионногопроцесса
- •Графический расчет скорости коррозионногопроцесса
- •Контролирующий процесс коррозииметаллов
- •Показатели электрохимической коррозииметаллов
- •Влияние различных факторов на скорость электрохимическойкоррозии
- •Внутренние факторыкоррозии
- •Внешние факторыкоррозии
- •Влияние кислотности среды
- •Влияние конструктивных особенностей аппаратов на коррозионныйпроцесс
- •Влияние механических факторов на коррозионныйпроцесс
- •Коррозия металлов в различныхусловиях
- •Атмосфернаякоррозия
- •Подземнаякоррозия
- •Морскаякоррозия
- •Коррозия в расплавленныхсолях
- •Биохимическаякоррозия
- •Локальнаякоррозия
- •Межкристаллитнаякоррозия
- •Точечная (питтинговая)коррозия
- •Контактнаякоррозия
- •Щелеваякоррозия
- •Химическаякоррозия
- •Газоваякоррозия
- •Химическая коррозия внеэлектролитах
- •Классификация методов защиты конструкций откоррозии
- •Коррозионностойкие и жаростойкие конструкционныематериалы
- •Характеристика коррозионной стойкостиметаллов
- •Коррозионностойкое легированиеметаллов
- •Жаростойкое легированиеметаллов
- •Классификация коррозионноустойчивыхсплавов
- •Коррозионностойкие сплавы на основежелеза
- •Коррозионная стойкость медныхсплавов
- •Коррозионная стойкость алюминиевыхсплавов
- •Поведение металов и сплавов в агрессивных химическихсре-
- •Неметаллические конструкционные материал. Процессыста- рения
- •Металлические защитныепокрытия
- •Классификация металлическихпокрытий
- •Гальваническиепокрытия
- •Диффузионные, горячие, металлизационные и плакированныепокрытия
- •Неметаллические защитныепокрытия
- •Лакокрасочныепокрытия
- •Оксидные и фосфатные защитныепленки
- •Эмалевыепокрытия
- •Покрытия смолами, полимерами ирезиной
- •Защита металлов от коррозии уменьшением агрессивности коррозионнойсреды
- •Обработка коррозионнойсреды
- •Ингибиторыкоррозии
- •13 Электрохимическая защита
- •Классификация защиты подземныхсооружений
- •Электродренажнаязащита
- •Протекторнаязащита
- •Катодная и анодная защита внешнимтоком
- •14. Методы исследования и контроля коррозионных процессов
- •Классификация методов коррозионныхисследований
- •Критерии оценки коррозионныхэффектов
- •Методы коррозионныхиспытаний
- •Мониторинг коррозионныхпроцессов
Морскаякоррозия
Коррозии в морской воде подвержены металлические части морских су- дов, механизмы и трубопроводы, металлические сооружения морских портов и т. д. Морская вода является хорошо аэрированным, нейтральным электро- литом с высокой электропроводностью, обусловленной наличием в ней со- лей с большим содержанием хлоридов, оказывающих депассивирующее дей- ствие.
Механизм морской коррозии металлов электрохимический, преимуще- ственно с кислородной деполяризацией. На скорость морской коррозии ока- зывают влияние состав морской воды, ее температура и скорость движения, дополнительный механический фактор (аэрирование, кавитация), контакт разнородных металлов, биологический фактор (обрастание подводной части металлических сооружений морскими растительными и животными орга- низмами). Общая концентрация солей в морской воде достигает 4%, что влияет на ее электропроводность. Йод и бром играют роль дополнительных катодных деполяризаторов и ускоряют коррозию. Хлор-ион является силь- ным депассиватором, т. е. ускоряет анодный процесс коррозии металлов. Се- роводород подкисляет морскую воду и связывает ионы металлов в трудно- растворимые сульфиды, облегчая протекание анодного и катодного элек- тродных процессов электрохимической коррозии. При прохождении элек- трического тока через подводную часть судов и морских сооружений возни- кает их электрокоррозия.
Большое влияние на скорость коррозии в морской воде оказывает глу- бина погружения. Скорость коррозии металлов резко уменьшается с глуби- ной погружения, что связано с уменьшением содержания кислорода в воде. На глубине 1000 м наблюдается минимум скорости коррозии, что соответст- вует достижению минимального содержания кислорода в морской воде.
Относительно высока скорость коррозии морских судов по ватерлинии. Особенно интенсивно процесс разрушения металла развивается в зоне, рас- положенной несколько выше этой линии. Этому способствует облегченный доступ кислорода, смывание защитных пленок с поверхности, периодиче- ское ее смачивание электролитом с последующим высыханием, перепадом температур.
Наиболее распространенным методом защиты металлов от коррозии в морской воде является нанесение лакокрасочных покрытий. Используют также цинковые и кадмиевые покрытия как самостоятельные или как под- слой под лакокрасочные. Широкое применение находит электрохимическая
защита морских судов и сооружений, а также применение некоторых корро- зионно-стойких сплавов (например сплав меди с никелем).
Коррозия в расплавленныхсолях
Расплавленные соли широко используются в промышленности при про- изводстве электролитическим способом ряда металлов (алюминий, литий, натрий, магний и др.) в качестве нагревающих сред при термической обра- ботке, как теплоносители в теплоэнергетике. Металлы, соприкасаясь с рас- плавленными солями, взаимодействуют с ними и подвергаются коррозион- ному разрушению.
При погружении металлов в расплавленные соли, являющиеся электро- литами, в результате взаимодействия между ними возникает разность элек- трических потенциалов (электродные потенциалы в расплавленных солях). Значения этих потенциалов зависят от природы анионов расплава и сущест- венно отличаются от электродных потенциалов в водных растворах по вели- чине и расположению в электрохимическом ряду напряжений. Для некото- рых металлов (серебро, цинк, свинец и др.) установлено, что в расплавах своих солей они ведут себя обратимо и их электродные потенциалы соответ- ствуют термодинамическому уравнению
0
EMe
EMe
(RT/nF)lna
Men
Для большинства металлов в расплавах их солей устанавливается необ- ратимый или стационарный электродный потенциал.
Коррозия металлов в расплавленных солях является электрохимической и состоит из двух сопряженных электродных процессов:
анодного (окислениеметалла):
Me +mA= Men+·mA+ne;
катодного (ассимиляция электроновдеполяризатором)
D+ne= [D·ne].
Катодными деполяризаторами в расплавленных солях, по данным Н. Д. Томашова, могут быть растворенный в расплаве кислород, вода необезво- женного расплава, некоторые катионы:
О2+ 4е = 2О2;
H2O = H++ OH; H++ e = 1/2H2; Fe3++ e = Fe2+.
Условием возможности самопроизвольного протекания коррозионного процесса в расплавах является убыль изобарно-изотермического потен- циала реагирующей системы, т. е.ΔGТ< 0. Электрохимическое растворение металлов в расплавах хлористых солей идет в основном на анодныхучастках
границах зерен, а центральные части зерен являютсямикрокатодами.
При высоких температурах в расплавленных солях углеродистые стали, помимо их коррозионного растворения, подвергаются обезуглероживанию кислородом воздуха, влаги. Обычно чем агрессивнее расплав в коррозион- ном отношении, тем сильнее в нем идет обезуглероживание сталей.
На скорость коррозии в расплавленных солях оказывают влияние вид соли, кислород и различные добавки. Расплавы сульфатов агрессивнее рас- плавов хлоридов, так как сульфат-ион является катодным деполяризатором. Расплавы нитратов еще агрессивнее, так как нитрат-ион представляет собой активный катодный деполяризатор. Пропускание через расплав соли кисло- рода, воздуха или водяного пара приводит к увеличению скорости коррозии, так как облегчается катодный процесс. Коррозию сталей в расплавах солей снижает добавка таких веществ, как графит, активированный уголь, бура и другие восстановители, понижающие окислительную способность распла- вов.
Для защиты металлов от коррозии в расплавленных солях используют- ся следующие методы: применение менее агрессивных расплавов; снижение содержания в расплавах вредных примесей; максимальное снижение скоро- стей конвективных потоков; электрохимическая катодная защита.
