Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций по Архитектуре и организации ЭВМ.doc
Скачиваний:
129
Добавлен:
20.06.2014
Размер:
6.09 Mб
Скачать

Понятие функциональной полноты фал

Было отмечено, что техническая (физическая) задача синтеза произвольного устройства сводится к математической задаче построения произвольной ФАЛ.

Естественно возникает вопрос, какое количество связок необходимо, чтобы построить произвольную ФАЛ. Ответ на этот вопрос не однозначен. Мы видим, что, например, с помощью только функции f0(константа 0), f15(константа 1) произвольную ФАЛ построить нельзя. Нельзя ее построить и с помощью только инвертора. Существуют и другие базисы:,, 1, |. Есть также одноэлементные базисы: f8– стрелка Пирса, f14– штрих Шеффера, И-НЕ, ИЛИ-НЕ.

Технически синтез устройства означает, что нужно иметь некоторый набор элементов, ФАЛ которых образуют базис, чтобы можно было построить реальное устройство.

Однако, как было отмечено, задача синтеза ФАЛ – идеальная модель. В действительности, для построения реальных устройств пользуются несколько более расширенным набором элементов - усиления и коррекции сигналов.

Минимизация фал и ограничения при ее рассмотрении

Покажем на примере, что СДНФ не является экономной формой записи:

f(Х1, Х2)= Х1Х2Х1Х2Х1Х21Х1Х2

на основании полного склеивания по Х2мы видим, что запись стала короче, т.к. содержит меньшее число связок и букв. Физически это означает, что устройство, которое реализует эквивалентную, но более простую функцию, будет иметь в своем составе меньшее количество оборудования, а следовательно, будет работать надежнее.

Итак, задача синтеза устройства должна быть дополнена задачей уменьшения оборудования в нем. С математической точки зрения это задача построения минимальной ФАЛ.

Под минимальной ФАЛ понимается такая форма, в которой содержится меньшее количество букв и членов, чем в ее исходной форме.

Речь идет именно о буквах, а не о переменных, так в функции:

f(Х1, Х2)= Х1Х2Х1Х2Х1Х2имеется 6 букв и только 2 переменных.

Видно, что если какое-либо элементарное произведение входит в функцию, то при добавлении к нему новых сомножителей, полученное произведение так же будет входить в функцию.

Пример: если Х1Х2входит в функцию от любого числа аргументов (>2), то в нее войдет, например, произведение Х1Х2Х3.

Это можно показать так:

f(Х1, Х2)= Х1Х21Х2)= Х1Х23Х3)1Х2)= Х1Х2Х3Х1Х2Х31Х2)=Х1Х2Х31Х2Х3)

Дадим ряд определений:

  1. Произведение одной или нескольких неповторяющихся переменных, взятых с отрицанием или без него, называют элементарным.

Например, Х1Х2Х3– элементарное произведение, т.к. в него входят различные буквы Х1Х2Х3.

  1. Дизъюнкция элементарных произведений – ДНФ.

  2. ДНФ является минимальной, если в ней минимальное число букв и членов.

  3. Конституентой единицы функции называют функцию, принимающую значение единицы только на одном наборе аргументов.

Обычно конституенты единицы выражают через произведение всех переменных, от которых зависит функция. СДНФ – дизъюнкция конституент единицы.

  1. Ранг произведения – число букв, входящих в него.

  2. Собственной частью называется произведение, полученное путем отбрасывания одной или нескольких переменных.

Например, Х1Х2Х3Х4, где Х1, Х1Х2, Х1Х2Х3– некоторые собственные части.

  1. Если функция равна нулю на наборах аргументов, на которых обращается в нуль функция F, то говорят, чтоявляется импликантой функции F (т.е. нулей у импликанты не меньше, чем у функции).

  2. Простой импликантой называется произведение, которое само входит в выражение функции, но никакая его собственная часть в выражение функции не входит.

Например, Х1Х1Х2Х3Х1Х3=f: здесь Х1- простая импликанта, а Х1Х2Х3и Х1Х3- не простые.