- •Н.В. Ладин
- •Глава 1. Основы теории судовых холодильных машин . 11
- •Глава 2. Компрессоры судовых холодильных установок. 43
- •Глава 3. Теплообменные аппараты и вспомогательное оборудование судовых
- •Глава 4. Определение холодопроизводительности судовой холодильной
- •Глава 5. Автоматизация судовых холодильных установок 122
- •Глава 6. Кондиционирование воздуха на судах 163
- •Глава 7. Основы технической эксплуатации судовых холодильных
- •Введение.
- •Глава 1. Основы теории судовых холодильных машин.
- •1.1. Способы получения низких температур
- •Изменение агрегатного состояния вещества. Тепловые диаграммы.
- •Расширение с совершением внешней работы
- •Дросселирование (эффект Джоуля – Томсона)
- •Вихревой эффект Ранка
- •Термоэлектрический эффект Пельтье
- •Одноступенчатые парокомпрессионные холодильные машины Обратный цикл Карно
- •Одноступенчатая парокомпрессионная холодильная машина c регулирующим вентилем
- •Одноступенчатая парокомпрессионная холодильная машина с регенеративным теплообменником.
- •1.2.4. Холодильная машина с винтовым компрессором и экономайзером.
- •Двухступенчатые парокомпрессионные холодильные машины.
- •Двухступенчатая холодильная машина с однократным дросселированием и неполным промежуточным охлаждением
- •1.3.2. Двухступенчатая холодильная машина с однократным дросселированием и полным промежуточным охлаждением
- •Двухступенчатая холодильная машина с двукратным дросселированием и полным промежуточным охлаждением
- •Каскадная реконденсационная установка газовоза.
- •1.5. Холодильные установки изотермических (рефрижераторных) контейнеров.
- •Глава 2. Компрессоры судовых холодильных установок.
- •2.1. Классификация компрессоров.
- •2.2. Конструкции поршневых компрессоров
- •2.3. Потери в поршневых компрессорах.
- •2.4. Принцип работы и потери в винтовых компрессорах.
- •2.5. Конструкции винтовых компрессоров
- •2.6. Принцип действия и потери в спиральных компрессорах.
- •2.7. Конструкция спиральных компрессоров
- •Глава 3. Теплообменные аппараты и вспомогательное оборудование судовых холодильных установок.
- •3.1. Конструкции конденсаторов.
- •3.2. Конструкции испарителей
- •3.3. Процессы в теплообменных аппаратах судовых холодильных установок, их тепловые расчеты
- •3.4.Вспомогательное оборудование холодильной установки.
- •Глава 4. Определение холодопроизводительности судовой холодильной установки
- •4.1. Хранение скоропортящихся продуктов на судах.
- •4.2. Системы охлаждения на судах.
- •4.3.Изоляционные материалы и конструкции
- •4.4.Увлажнение изоляции
- •4.5.Необходимая холодопроизводительность установки
- •Глава 5. Автоматизация судовых холодильных установок
- •5.1. Свойства холодильной установки как объекта автоматизации
- •5.2. Системы автоматического регулирования температуры в охлаждаемом объекте.
- •5.3. Система автоматического регулирования температуры перегрева паров хладагента в испарителе.
- •5.4. Системы автоматического регулирования температуры кипения хладагента
- •5.5. Система автоматического регулирования давления конденсации.
- •5.6. Автоматическая защита и контроль работы холодильных установок.
- •5.7. Типовые схемы автоматизации холодильных установок провизионных камер.
- •Глава 6. Кондиционирование воздуха на судах
- •6.1. Физиологические основы кондиционирования воздуха
- •6.2. Требования, предъявляемые к судовым системам кондиционирования воздуха. Классификация скв
- •6.3. Основные параметры влажного воздуха, критерии и нормы тепловлажностного комфорта
- •6.5. Схемы и сравнительные характеристики судовых систем кондиционирования воздуха
- •6.6. Судовые кондиционеры и их элементы.
- •Глава 7. Основы технической эксплуатации судовых холодильных установок.
- •7.1. Особенности организации технической эксплуатации судовых холодильных установок.
- •7.2.Хладагенты.
- •7.3. Холодильные масла и их свойства.
- •7.4.Техника безопасности при эксплуатации сху.
- •7.5. Основы технического использования судовых холодильных установок.
- •7.6. Отдельные операции при техническом обслуживании судовой холодильной установки.
- •7.7. Особенности эксплуатации компрессоров, аппаратов, автоматики и оборудования судовой холодильной установки
- •7.9. Комплекс мероприятий по замене озоноопасных хладагентов на озонобезопасные (ретрофит).
- •Контрольно-измерительные материалы
- •Приложение 7
- •Приложение 8 Краткий словарь англо-русских холодильных терминов
Глава 2. Компрессоры судовых холодильных установок.
Слово компрессор происходит от «компрессии» (латинское соmpressio — сжатие – силовое воздействие на газообразное тело, приводящее к уменьшению его объема и повышению давления и температуры). В холодильной машине компрессор служит для отсасывания паров хладагента из испарителей, их сжатия и нагнетания их в конденсатор.
2.1. Классификация компрессоров.
Все холодильные компрессоры в зависимости от холодопроизводительности условно разделяются на малые (холодопроизводительностю до 15 кВт), средние (холодопроизводительностю от 15 до 120 кВт) и крупные (холодопроизводительностю свыше 120 кВт).
В зависимости от температурного диапазона работы холодильные компрессоры подразделяются на высокотемпературные (температура кипения от —15°С и выше), среднетемпературные (с температурой кипения от —10 до —30С) и низкотемпературные (температура кипения ниже —30°С).
По принципу действия различают объемные лопастные и струйные компрессоры. В объемных компрессорах объем газа в цилиндрах сжимается, а затем нагнетается в конденсатор. В лопастных компрессорах пары хладагента перемещаются через проточную часть компрессора под воздействием вращающихся лопастей. Струйные компрессоры работают по принципу струйных насосов.
По конструкционным признакам различают компрессоры поршневые, винтовые, спиральные, ротационные и др.
В судовых холодильных установках первые три группы компрессоров получили наибольшее распространение.
Поршневые компрессоры, составляющие наиболее многочисленную группу судовых холодильных компрессоров, классифицируют в зависимости от направления движения паров хлад агента в цилиндре на непрямоточные и прямоточные (рис. 2.1,а,б), по числу цилиндров — на одно- и многоцилиндровые, причем на судах применяются, в основном, с V-образным и W-образным расположением цилиндров (рис. 2.1,в,г).
В прямоточных компрессорах (см. рис. 2.1,б) пары в цилиндре движутся в одном направлении в течение всего цикла. Всасывающий клапан размещается в днище поршня, нагнетательный — в крышке цилиндра. В непрямоточных компрессорах (см. рис. 2,1, а) движение пара совпадает с направлением движения поршня.
Если компрессор приводится в действие от отдельного электродвигателя с помощью клиноременной передачи или непосредственно от вала электродвигателя через муфту (рис. 2.1, д), то при таком исполнении устанавливают сальник коленчатого вала в месте выхода его из картера. Сальник является слабым звеном компрессора, поэтому выпускают также компрессоры бессальниковые (рис. 2.1, е) и герметичные (рис. 2.1, ж). Отсутствие сальника повышает надежность работы компрессора.
Рис. 2.1. Классификация поршневых компрессоров.
а, б — непрямоточные и прямоточные; в, г — V-образные и W-образные; д,е,ж — сальниковые, бессальниковые, герметичные.
При работе компрессора необходимо учитывать следующее. Он работает в широком диапазоне изменения давлений в конденсаторе и испарителе. На стороне нагнетания температура и давление высокие, а на стороне всасывания – низкие. Хладагент, взаимодействуя со смазочным маслом, образует маслохладоновую смесь, свойства которой и ее поведение отличаются от свойств самого хладагента. Утечки хладагента из компрессора в атмосферу, как и подсос воздуха в компрессор, недопустимы.
К компрессорам предъявляются следующие требования: высокая надежность, достаточный моторесурс деталей и узлов компрессора, высокая энергетическая эффективность, полная автоматизация работы компрессора, высокая степень унификации деталей и узлов компрессора, использование прогрессивной технологии при изготовлении и ремонте, низкий уровень шума и механической вибрации.
