- •Часть 1
- •Оглавление
- •Предисловие
- •1. Динамика системы частиц
- •1.1. Моделирование в динамике материальной точки и системы частиц
- •1.2. Пространственные и временные отношения, их объективные характеристики
- •1.3. Характеристики прямолинейного движения. Понятие о мире событий и состоянии частицы
- •1.4. Принцип инерции. Импульс как характеристика состояния частицы
- •1.5. Центр масс системы частиц. Движение центра масс
- •1.6. Уравнение движения тела переменной массы
- •1.7. Неинерциальные системы отсчёта. Сила инерции
- •2. Работа и энергия. Всемирное тяготение
- •2.1. Характеристики несвободной частицы. К вопросу о понятии силы в динамике
- •2.2. Понятие работы в механике. Мощность. Кинетическая энергия
- •2.3. Потенциальная энергия как характеристика внешнего воздействия
- •2.4. Механическая энергия. Закон сохранения энергии
- •3. Механика твёрдого тела
- •3.1. Момент импульса частицы. Понятие момента инерции
- •3.2. Кинетическая энергия вращающегося тела
- •3.3. Вычисление момента инерции для простейших тел
- •3.4. Основное уравнение вращения
- •3.5. Закон сохранения момента импульса
- •4. Элементы теории относительности
- •4.1. Преобразования Галилея
- •4.2. Принцип относительности и предельная скорость движения
- •4.3. Относительность одновременности
- •4.4. Относительность длины отрезка
- •4.5. Преобразования Лоренца
- •4.6. Пространственно-временной интервал как объективная характеристика мира событий
- •4.7. Релятивистский импульс и релятивистская энергия
- •5. Колебательное движение
- •5.1. Сложение однонаправленных колебаний
- •5.2. Сложение взаимно перпендикулярных колебаний
- •5.3. Затухающие колебания
- •5.4. Вынужденные колебания
- •6. ВолНовЫе процессы
- •6.1. К вопросу о понятии кристалла
- •6.2. Понятие волны. Уравнение плоской волны. Волновое уравнение
- •6.3. Плотность энергии в бегущей упругой волне
- •6.4. Интерференция волн. Стоячие волны
- •7. Элементы кинетической теории газов
- •7.1. Распределение молекул газа по скоростям
- •7.2. Средняя длина свободного пробега молекул
- •7.3. Уравнение переноса в газах. Диффузия
- •7.4. Уравнение переноса в газах. Теплопроводность
- •7.5. Уравнение переноса. Вязкость газов
- •8. Реальные газы
- •8.1. Реальный газ малой плотности. Понятие об уравнении Ван-Дер-Ваальса
- •8.2. Изотермы Ван-дер-Ваальса. Критическое состояние вещества
- •8.3. Фазы. Фазовые диаграммы. Тройная точка
- •8.4. Тепловые характеристики твёрдых тел
- •9. Электростатика
- •9.1. Понятие об электрическом поле
- •9.2. Циркуляция электрического поля неподвижных зарядов. Электрический потенциал
- •9.3. Поток вектора напряжённости. Закон Гаусса. Графическое отображение электрического поля
- •9.4. Применение закона Гаусса для расчёта электрического поля системы проводников
- •9.5. Электрическое поле системы проводников
- •Библиографический список
- •Часть 1
1. Динамика системы частиц
1.1. Моделирование в динамике материальной точки и системы частиц
Согласно фундаментальной концепции Ньютона свойства природы в больших масштабах полностью определяются её микроскопическим строением. Поэтому изучение природы было бы естественно начинать с нахождения подлинных «кирпичиков» мироздания и установления характеристик, определяющих их состояние и движение. Однако свойства реальных элементарных объектов нам пока неизвестны. В этих условиях, следуя Ньютону, вместо реальных объектов природы на роль таких «кирпичиков» целесообразно выбирать их идеализированную модель [2].
Наиболее подходящей для этого является модель частицы, или корпускулы, интуитивное представление о которой имеет каждый человек. Под ней, как правило, подразумевается малая доля любого материального объекта. Характерные особенности этой модели мы начали раскрывать в предыдущем семестре (пропедевтический курс физики).
Выделенная роль
модели частицы в описании природы
определяется двумя обстоятельствами.
Во-первых, эта модель универсальна, ибо
в определённых условиях и
реальная элементарная частица (например,
электрон), и пылинка, и биллиардный шар,
и планета, и галактика могут рассматриваться
как частицы. Во-вторых, она предельно
проста, поскольку состояние частицы
минимально фиксируется всего двумя
параметрами, определяющими все остальные
её характеристики
.
Движение же частицы, т. е. изменение её
состояния со временем, сводится к
наглядному процессу перемещения вдоль
траектории
(мировой линии) в пространстве.
До сего момента, в частности, в работе [3], мы говорили о модели свободной частицы. Однако для реальных ситуаций, к рассмотрению которых мы приступаем, частицы испытывает непрерывное внешнее воздействие, но и к ним, всё же, применима модель частицы [2]. Это означает возможность моделирования материальных объектов «несвободными» частицами, характеристики состояния которых изменяются со временем. Такая модель обладает рядом преимуществ. Во-первых, она позволяет использовать такую частицу в качестве «зонда» при исследовании характеристик внешних воздействий и их взаимосвязей со свойствами пространства и времени. Во-вторых, в модели «несвободной» частицы известные характеристики состояния свободной частицы не остаются со временем без изменения. В связи с этим представляет интерес установление объективных характеристик внешнего воздействия на частицу, и открытие и применение законов, управляющих изменением характеристик состояния частицы со временем.
Рассуждая о проблемах исследования довольно простых систем – либо о свободных частицах, либо об одиночной частице, испытывающей непрерывное воздействие со стороны окружающих её массивных тел, мы, вместе с тем, не должны забывать, что в природе гораздо чаще встречаются совокупности материальных объектов, каждый из которых можно моделировать частицей. Такова, например, Солнечная система или рассмотренная ранее нами модель идеального газа. Общей особенностью таких совокупностей является взаимодействие составляющих их объектов между собой либо кратковременно (например, в газах), либо непрерывно (планетные системы). Возможно ли описать подобные совокупности материальных объектов, опираясь на введённые модели свободной и несвободной частицы? Для упрощения аналитического решения задачи будем рассматривать только изолированные совокупности частиц. В то же время не будем забывать, изолированная система взаимодействующих частиц, взятая сама по себе, – это обобщение модели свободной частицы, но лишь в те моменты, когда её размерами можно пренебречь. Таким образом, модель изолированной системы взаимодействующих частиц имеет то преимущество, что её свойства жёстко связаны со свойствами пространства и времени, описываемыми фундаментальными законами сохранения. Опираясь на эти законы можно описать движение частиц при различных способах их взаимодействия и движения в изолированной системе, а также движение самой системы как целого. При этом у нас появляется возможность постепенного перехода от кратковременного взаимодействия, проявляющегося внутри системы, к непрерывному взаимодействию, характерному для движения системы как целого.
Ранее, в работе [3, гл. 4; 5] мы уже использовали процессы кратковременного взаимодействия частиц, или, иначе, столкновения, для введения ряда фундаментальных величин, характеризующих свободную частицу. Переход от свободной частицы к изолированной системе частиц, взаимодействующих кратковременно, позволил нам сформулировать фундаментальные законы сохранения импульса и энергии для этой системы. Оказалось, знание одних только фундаментальных законов сохранения позволяет описать многие свойства изолированной системы частиц, взаимодействующих кратковременно, даже при отсутствии какой-либо информации о деталях взаимодействия. В связи с этим содержание данной главы сводится к динамике частиц и введению характеристик не только для одиночной частицы, но и для системы частиц, определяющих состояние и движение системы как целого.
Следует также обратить внимание на то, что в работе [3, с. 15] нами были предприняты усилия по рассмотрению динамики прямолинейного движения тел; здесь, однако, предметом исследования была физическая причина, обусловливающая тот или иной характер движения тела. Однако движущееся тело, как мы знаем, состоит из большого ансамбля частиц, материальных точек – молекул или атомов. В связи с этим естественно возникает вопрос, а «работают» ли законы динамики Ньютона при рассмотрении движения единичной частицы и каковы предельные размеры рассматриваемой частицы? Частично убедиться в этом нам удалось при рассмотрении колебательных процессов, механики сплошных сред и статистических методов исследования в работе [3, гл. 3; 4; 5].
