- •1. Мера информации предложенная автором теории информации Клодом Шенноном:
- •1.2 Аддитивная мера количества информации, ее связь с мерой к. Шеннона и сфера применения.
- •2. Роль, виды и критерии квантования (дискретизации) непрерывных сигналов.
- •2.1. Виды дискретизации (квантования)
- •2.2. Критерии точности представления квантованного сигнала
- •3. Формулировка теоремы Найквиста-Котельникова и ее ограничения.
- •4. Теорема о минимальной средней длине кодового слова.
- •5. Назначение и порядок построения оптимальных кодов Шеннона-Фэно и Хаффмена. Коды Хаффмена
- •Коды Шеннона−Фэно:
- •6. Кодирование информации. Равномерные и неравномерные коды. Двоичное кодирование.
- •7. Общие принципы использования избыточности при построении помехоустойчивых кодов
- •Принципы помехоустойчивого кодирования
- •8. Основная теорема Шеннона для дискретных каналов с шумом.
- •9. Пропускная способность непрерывного канала с аддитивным шумом.
- •10. Состав современного пк. Назвачение. Состав компьютерной системы
- •11. Микропроцессоры. Назвачение, типы . Основные характеристики.
- •1. Оперативная память
- •3. Специальная память
- •4. Видеопамять
- •12. Понятие и основные свойства алгоритма. Способы описания алгоритмов. Стандарты для изображения блок-схем алгоритмов.
- •Блок-схемы:
- •13. Отличительные особенности эвм различных поколений. Первое поколение эвм (1948 — 1958 гг.)
- •Второе поколение эвм (1959 — 1967 гг.)
- •Третье поколение эвм (1968 — 1973 гг.)
- •Четвертое поколение эвм (1974 — 1982 гг.)
- •14. Основные характеристики эвм.
- •15. Архитектурные особенности четвёртого поколения эвм.
- •16. Назначение и характеристики системы прерываний. Порядок обработки прерывания.
- •Характеристики системы прерываний:
- •17. Иерархическая структура памяти эвм. Назначение.
- •18. Концепция виртуальной памяти и методы её реализации.
- •19. Многопроцессорные вычислительные системы.
- •20. Типовые структуры многопроцессорных систем.
- •21. Многомашинные вычислительные системы:
- •22. Организация параллельных вычислений в современных компьютерах.
- •23. Risc и cisc архитектуры.
- •24. Принципы построения ос.
- •25. Задачи ос по управлению файлами и устройствами.
- •26. Классификация ос.
- •27. Функция ос.
- •28. Базовые технологии безопасности ос.
- •29. Поколение ос.
- •30. Свопинг и виртуальная память
- •31. Задачи файловой системы в ос.
- •32. Типы структур файловой системы:
- •33. Физическая организация фс. (Файловой системы)
- •34. Классификация компьютерных сетей:
- •35. Эталонная модель взаимодействия открытых систем osi.
- •Распределенные системы обработки данных
- •В модели osi средства взаимодействия делятся на семь уровней:
- •Уровни модели osi Физический уровень.
- •Канальный уровень.
- •Сетевой уровень.
- •36. Характеристика методов доступа к передающей среде в компьютерных сетях.
- •37. Характеристика спутниковых сетей связи.
- •38. Маршрутизация пакетов в сетях.
- •39. Коммутация пакетов в сетях.
- •Процесс передачи данных в сети с коммутацией пакетов
- •Методы пакетной коммутации
- •Дейтаграммный метод
- •Виртуальный метод
- •41. Характеристики и области применения цифровых сетей с isdn
- •42. Характеристика и области применения сетей атм.
- •43. Характеристика и области применения локальных компьютерных сетей.
- •44. Топология локальных сетей. Основные топологии. Преимущества и недостатки.
- •45. Архитектуры файл-сейрвер и клиент-сервер локальных сетей.
- •46. Типовая структура глобальных компьютерных сетей.
- •47. Типы глобальных компьютерных сетей
- •48. Корпоративные компьютерные сети: характеристики и функции.
- •49. Протоколы семейства tcp/ip.
- •50. Понятия: протокол, интерфейс, стек протоколов, спецификации.
- •51. Назначение и классификация интерфейсов.
- •52. Пользовательский интерфейс.
- •54. Программный интерфейс.
- •55. Аппаратный интерфейс.
- •56. Системные и периферийные интерфейсы.
- •57. Сетевые интерфейсы и протоколы.
- •58. Мультиплексный режим передачи данных.
- •59. Способы доступа к удаленным ресурсам.
- •Служба общего доступа (sharing)
9. Пропускная способность непрерывного канала с аддитивным шумом.
Пропускная способность непрерывного канала с аддитивным шумом.
Рассмотрим следующую модель канала:
Канал способен пропускать колебания с частотами ниже Fm.
В канале действует помеха n(t), имеющая нормальный (гаусcовский) закон распределения с нулевым средним значением.
Помеха n(t) статистически не связана с полезным сигналом x(t).
Помеха аддитивна, т.е. сигнал y(t) на выходе канала описывается формулой y(t) = x(t) + n(t), где x(t) – сигнал на входе канала.
Мощность Px полезного сигнала x(t) ограничена.
Ограниченность
полосы пропускания канала приводит к
ограниченности спектра выходного
сигнала y(t).
Поэтому согласно теореме Котельникова
без потери информации сигналы x(t),
y(t)
и n(t)
можно представить в виде ряда независимых
отсчетов, взятых с шагом
.
Как было доказано ранее количество информации I, приходящейся на один отсчет, равно: I = H(x) - H(x/y) = H(y) – H(y/x) .
Ранее нами было показано, что энтропия H(y) непрерывной случайной величины y находится по формуле:
.
Найдем
H(y/x).
Перейдем к дискретному представлению
x
и y
с шагом
и
.
Н
Рис. 4.7. График функции f(y/x).
айдем теперь дифференциальный закон f(y/x). Если x фиксирован, а y(t)=x(t)+n(t), тоf(y/x)=f(n-x).
График этой функции изображен на рис. 4.7.
Поскольку
Х фиксирован
.
10. Состав современного пк. Назвачение. Состав компьютерной системы
Так, например, в минимальный состав компьютера можно выделить несколько компонентов:
•Системный блок - в нём располагаются внутренние узлы персонального компьютера;
•Монитор - позволяет вывод данных: текстов, изображений и другой информации;
•Клавиатура - служит для ввода информации;
•Мышь - хоть при её помощи можно управлять работой компьютерных программ.
(Компьютерная мышь не входит в состав базовой конфигурации ПК!)
Корпус системного блока:
Конструкция корпуса определяет не только внешний вид системного блока, а вместе с ним и домашний уют и даже его начинку, а именно форм-фактор материнской платы, а вместе с ней и количество подключаемых компонентов. Система охлаждения целиком и полностью тоже зависит о корпуса вашего компьютера, она должна быть тихой, но эффективной.
Системная (материнская) плата:
Её называют как системной, так и материнской платой, смысловая нагрузка на данные термины совершенно одинаковая, когда её называют так или иначе, имеют в виду одно и тоже. Благодаря системной плате обеспечивается механическое крепление на прямую и с помощью специальных кабелей всех компонентов системного блока, а вмести с ним и их питание и внутренняя взаимосвязь. Так же на ней находятся различные контролеры.
Процессор и его система охлаждения:
Микропроцессор, являющийся составляющей процессора, выполняет большинство вычислительных операций. Современные процессоры нуждаются в хорошем энергопотребление, а, температура некоторых представителей позволяет даже вскипятить чайник, поэтому без системы охлаждения не обойтись:
Радиатор - обеспечивает пассивное охлаждение процессору, но один радиатор уже не справляется с большими тепловыделениями и поэтому на него обычно крепится, для воздушного охлаждения специальный вентилятор. Да и вообще найти радиатор отдельно от вентилятора скорее всего уже не удастся.
Существуют и альтернативные системы охлаждения, но они обычно требуются для использования разгонного потенциала центрального процессора.
Модуль оперативной памяти:
Еще, оперативную память называют ОЗУ - оперативное запоминающее устройство, необходима для хранения временных данных, хорошим примером является буфер обмена при копировании и последующей вставке. Процессор передаёт информацию в оперативную память и по мере необходимости забирает её оттуда. Особенностью оперативной памяти является практически молниеносное быстродействие, которое даёт возможность обмена данных с процессором, на его же скорости их обработки. Следует учитывать, что длительное хранение данных практически не достижимо, ОЗУ является энергозависимой составляющей персонального компьютера, при отключении питания ПК, вся информация безвозвратно исчезнет.
На плате модуля находятся несколько микросхем работающих как одно целое, а для установки в материнскую плату, для наращивания оперативной памяти не требуются ни какие инструменты, данную операцию легко можно проделать самому.
Жёсткий диск и твердотельный накопитель:
HDD, от английского hard (magnetic) disk drive - представляет возможность для длительного по времени хранения данных информации, операционная система обычно устанавливается именно в раздел жёсткого диска. В материнскую плату, в отличие от оперативной платы он не монтируется, для его подключения требуются специальный шлейф. Шлейфы, которые используют определяются самим жёстким диском, а это или IDE, или SATA(1,2,3). На современных материнских платах разъём IDE отсутствует.
Как по отдельности, так и в комплекте с HDD в составе современных персональных компьютеров всё чаще используют твердотельный накопитель - SSD, в основе которого лежит флеш-память, хорошо подходящий для увеличения быстродействия компьютера благодаря высокому обмену данных c другими компонентами, по сравнению с HDD, но в тоже время являются более дорогостоящими. Поэтому для экономии, SSD небольших размеров используют для установки и работы операционной системы, а для хранения данных используют жёсткий диск. Рекомендуется к прочтению статья: «Что лучше SSD или HDD?».
Видеоадаптер (Видеокарта):
Видеокарта - графическая плата, устройство, отвечающее за построение (вывод) информации на дисплей монитора. Современные материнские платы бывают уже с интегрированными графическими адаптерами, которые хорошо показывают себя как в офисных приложениях для просмотра высококачественного видео, так и в не ресурсоёмких играх. Для высокопроизводительных задач видео плата докупается отдельно, монтируется в системную плату, а разнообразие моделей находится в совершенного разных ценовых сегментах.
Дисковод оптических дисков:
В конфигурации современного компьютера оптический дисковод по сравнению с его прежней популярностью используется всё реже и реже. Служит для чтения и записи дисков различных форматов. Подключается к системной плате при помощи шлейфа, так же, как и жёсткий диск или твердотельный накопитель.
Дисковод гибких дисков и кардридер:
Дисковод гибких дисков уже не используется для сборок современных компьютеров, но его ещё можно найти в устаревших ПК. На старых материнских платах был предусмотрен специальный разъём.
На современных компьютерах целесообразнее использовать кардридер, способный считывать и записывать информацию разных типов флеш накопителей.
Звуковой адаптер, модем и контроллер локальной сети:
Звуковой адаптер, служит для записи и воспроизведения звука, к нему подключаются наушники, звуковые колонки и микрофон.
Модем нужен для подключения и выхода в интернет, контролер сети или сетевая карта служит для подключения к сети и так же, как и модем для выхода в интернет.
В составе материнской платы сегодняшних дней, уже встроены как звуковой адаптер, так и сетевая карты, но для расширения возможностей можно их докупить.
Модемы, внутренние в виде платы и внешние в виде периферийного устройства, хоть и теряют свою популярность, но все же используются для подключения к интернету через телефонную линию. Более популярны в наши дни 3G/4G модемы использующие мобильное соединение.
Блок питания:
Название говорит само за себя, его основной функцией является подача электрического тока всем внутренним составляющим компьютерного системного блока. Так как от его мощности зависит стабильность работы системы, следует отнестись к выбору с пониманием или даже сделать его приобретение с небольшим запасом, которое будет кстати, при дальнейшем апгрейде(модернизации) комплектующих системного блока.
Состав персонального компьютера и системного блока этими компонентами не ограничивается, конфигурацию можно расширить, или заменить комплектующие по мере необходимости, а грань между понимания этих терминов немного стала чётче.
