- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
З
а
переносное движение тела примем
поступательное движение, за относительное
движение – вращение тела вокруг полюса
А (рис.
30).
Полюс А движется с ускорением aA и тело вращается вокруг полюса с угловой скоростью ω и угловым ускорением ε. Из формул для сложного движения точки имеем:
Рис. 30
Э
ту
формулу можно представить в виде
Точка В получает ускорение aBA вследствие вращения вокруг полюса А, компоненты этого ускорения определяются так:
отсюда
Мгновенный центр ускорений. В каждый момент движения плоской фигуры в своей плоскости, если ω и ε не равны нулю одновременно, имеется единственная точка этой фигуры, ускорение которой равно нулю. Эту точку называют мгновенным центром ускорений, мы будем ее обозначать Q.
П
усть
нам известны по модулю и направлению
ускорение какой-либо точки плоской
фигуры (точка О), угловая скорость и
угловое ускорение ε
этой фигуры (рис.
31).
Рис. 31
Мгновенный центр ускорений лежит на прямой, проведенной под углом α ( tgα=ε/ω2) к ускорению точки О.
При этом α надо отложить от ускорения aO в направлении дуговой стрелки углового ускорения ε.
Т
олько
в точках этой прямой ускорение aO
и ускорение от вращения aQO
могут иметь противоположные направления
и одинаковые по модулю значения:
Но
следовательно
Мгновенный центр ускорений является единственной точкой фигуры, ускорение которой в рассматриваемый момент времени равно нулю. В другой момент времени мгновенный центр ускорений находится в общем случае в другой точке плоской фигуры.
Если положение мгновенного центра ускорений известно, то выбрав его за полюс, для ускорения произвольной точки А, имеем:
и
ускорение aA
направлено под углом α
к отрезку AQ,
соединяющего точки A
и Q
в сторону дуговой стрелки ε
(рис. 32).
У
скорения
двух точек A
и B
показаны на рисунке, их величины равны
Рис. 32
Следовательно, ускорения точек плоской фигуры при плоском движении можно определить так же, как и при вращательном движении плоской фигуры вокруг мгновенного центра ускорений с угловой скоростью ω и угловым ускорением ε.
Для вычисления скоростей принимают, что фигура вращается вокруг мгновенного центра скоростей, для вычисления ускорений принимают, что фигура вращается вокруг мгновенного центра ускорений. В общем случае эти центры являются разными точками плоской фигуры.
Ускорения
точек плоской фигуры при плоском движении
подобно скоростям точек можно вычислить
двумя способами: по формуле
,
выражающей зависимость ускорений двух
точек плоской фигуры (способ 1) и по
формуле
,
используя мгновенный центр ускорений
(способ 2). Часто мгновенный центр
ускорений (кроме случаев, когда ω или ε
равных нулю) располагается так, что
трудно определить расстояние от него
до рассматриваемых точек фигуры,
поэтому рекомендуется использовать
способ 1 через формулу, связывающую
ускорения точек фигуры.
Способы нахождения мгновенного центра ускорений.
1.
Ускорения всех точек направлены к мгновенному центру ускорений (Рис. 33), так как они состоят только из одной нормальной составляющей от вращения вокруг мгновенного центра ус
Рис. 33 корений.
Если
известно aA,
то AQ
= aA/ω2.
2.
мгновенное поступательное движение (Рис. 34). Мгновенный центр ускорений лежит на пересечении перпендикуляров к ускорениям точек.
Рис. 34
Е
сли
известно aA,
то AQ
= aA/ε.
3.
И
меем
общий случай, ранее уже обсуждавшийся.
Угол α откладываем по дуговой стрелке
ε
от вектора ускорения (Рис.
35).
Если известно aA, то
Рис. 35
4
.
Пусть в данный момент времени известны
ускорения двух точек плоской фигуры A
и B
(Рис. 36).
Приняв за полюс точку A,
имеем:
(*),
г
де
Проецируя левую и правую части векторной формулы (*) на оси Bx и By получаем:
,
Рис. 36
где β и γ в принципе известные углы.
Проекцию anBA на ось Вх берем со знаком (+), так как она всегда направлена к оси вращения (к полюсу). Проекцию aτBA, берем со знаком (+) предполагая, что стрелка ε направлена против часовой стрелки.
Из уравнений проекций находим
знак ε определяется после подстановки данных в формулу.
После того, как найдены ε и ω, задача нахождения мгновенного центра ускорений сводится к случаю 3.
Вопросы для самопроверки:
1. Как задается скорость и ускорение в декартовой системе координат?
2. Какие системы координат Вы знаете?
3. Какое движение называется абсолютным, относительным, переносным?
4. Какое движение называется поступательным?
5. Какое движение называется вращательным?
6. Как определить мгновенный центр скоростей?
7. Как определить мгновенный центр ускорений?
