- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
6. Напряжённое и деформированное состояние в точке
6.1. Напряжённое состояние в точке
Понятие «напряжение в точке» связано как с самой точкой, так и с положением площадки, проведённой через данную точку. Поскольку через точку тела можно провести бесчисленное множество сечений, то в данной точке имеется и бесчисленное множество напряжений, связанных с площадками их действия Совокупность нормальных и касательных напряжений для множества элементарных площадок, проходящих через точку, называется напряжённым состоянием в точке. Сущность метода расчёта на прочность по допускаемым напряжениям состоит в нахождении этих напряжений, определении экстремальных значений и в сравнении их с допускаемым напряжением для материала элемента конструкции.
Вырежем около анализируемой точки D сечения тела элементарный параллелепипед (рис. 28а), оси которого (рис. 28б) ориентированы так же, как и оси х, у, z, по которым раскладывались главный вектор и главный момент внутренних сил в сечении, т. е. грани параллельны координатным плоскостям.
На гранях элементарного параллелепипеда внутренние силы ввиду малости площадок можно считать равномерно распределёнными в пределах каждой грани. По определениям (1.4)–(1.6) внутренние равномерные силы на элементарных гранях считаются напряжениями в точке.
Р
азложив
полное напряжение в точке D
по осям координат, получим систему
напряжений в точке (у касательных
напряжениях первый индекс указывает
ось, перпендикулярно которой расположена
площадка; второй − ось, параллельно
которой действует напряжение σx,
σy,
σz,
τху,
τух,
τzx,
τxz,
τyz,
τzy).
При изменении ориентации параллелепипеда
около выбранной точки D
(например, поворота) по его граням будет
действовать другая система напряжений,
значения которых могут быть определены
через старые.
Так как мысленно вырезанный из тела параллелепипед, по предположению, находится в равновесии под действием системы напряжений в точке, то суммы проекций всех сил на оси координат и суммы моментов всех сил относительно координатных осей должны быть равны нулю. Из этого следует:
– нормальные напряжения на противоположных гранях равны и противоположно направлены;
– на взаимно перпендикулярных площадках координатные составляющие касательных напряжения равны и направлены либо к смежному ребру, либо от него. Это положение носит название закона парности касательных напряжений.
Среди
бесчисленного множества площадок,
проходящих через рассматриваемую точку,
имеется, по меньшей мере, три взаимно
перпендикулярные площадки, на которых
отсутствуют касательные напряжения.
Такие площадки называются главными.
Нормальные напряжения на главных
площадках называются главными
и
обозначаются
с учётом знаков (после определения
численных значений).
Если отличны от нуля все три главных напряжения, то такое напряжённое состояние называется трёхосным или объёмным.
Если одно из главных напряжений равно нулю, то такое напряжённое состояние называется двухосным или плоским.
Если равны нулю два главных напряжения, то напряжённое состояние – одноосное или линейное.
Зная напряжённое состояние в любой точке детали, можно оценить прочность самой детали.
