- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
1.2. Моделирование и схематизация объектов и свойств материалов
Для оценки прочности реальной конструкции следует правильно подобрать адекватную ей модель, или расчётную схему. Это обусловлено тем, что решение задачи о прочности с учётом всех особенностей физического объекта и внешних нагрузок весьма затруднительно. При расчёте конкретной конструкции следует отбросить все второстепенные факторы и принять ту или иную расчётную схему в зависимости от характера и точности поставленной задачи.
Реальный объект, освобождённый от несущественных особенностей, носит название расчётной схемы или расчётной модели. Выбор расчётной схемы − важный этап решения задачи.
Для одного и того же объекта может быть предложено несколько расчётных схем в зависимости от требуемой точности и от того, какая сторона явления интересует исследователя в данном конкретном случае. Если для одного объекта может быть предложено несколько расчётных схем, то одной расчётной схеме может быть поставлено в соответствие много различных реальных объектов. Это обстоятельство очень важно, так как, исследуя некоторую схему, можно получить решение целого класса реальных задач, сводящихся к данной схеме.
Построение расчётной схемы начинается со схематизации геометрических форм элементов конструкции, нагрузок, структуры и свойств материала, характера взаимодействия детали и нагрузок.
Форма конкретного элемента конструкции либо детали может быть сложной. Её упрощают путём принятия модели формы, в качестве которых часто используют брусья, стержни, балки, валы, пластины, оболочки, тела.
Брус − это твердое тело, у которого один размер (длина) значительно больше двух других (толщины и ширины) (рис. 1а). Они могут иметь постоянное или переменное сечение, прямолинейную или криволинейную ось.
Стержень – это брус, который нагружается силами растяжения либо сжатия.
Б
алка
– это
брус,
нагруженный в основном изгибающими
нагрузками.
Вал – это обычно брус круглого поперечного сечения, испытывающий скручивающие и изгибающие нагрузки.
Пластина – тело, образованное двумя плоскостями, где толщина существенно меньше других размеров. Примеры пластин: плоские днища, крышки баков, перекрытия различного вида (рис. 1. б).
Оболочка – это конструкция, у которой один размер (толщина) значительно меньше двух других (рис. 1 в). К оболочкам можно отнести котлы, тонкостенные резервуары, трубы большого диаметра, топливные баки и т. п.
Тело – это объект (или массив), у которого все три характерных размера соизмеримы. На рис. 1г приведён пример массивного тела (бетонная опора моста).
В сопротивлении материалов при моделировании нагружения внешние нагрузки считаются известными или заданными. Нагрузки определяют либо экспериментально, либо рассчитывают.
По характеру действия нагрузки условно делят на статические и динамические.
Статические нагрузки прикладываются к исследуемому объекту настолько медленно, что вызванными ими ускорениями частиц можно пренебречь.
Динамические нагрузки прикладываются настолько быстро, что частицы тела исследуемой конструкции получают ускорения, которыми при прочностном расчёте пренебречь нельзя. К динамическим нагрузкам в сопротивлении материалов относят ударные, повторно-переменные и другие.
По способу приложения внешние нагрузки бывают сосредоточенные и распределённые.
Сосредоточенная сила действует на части поверхности тела, размеры которых малы по сравнению с общими размерами конструкции (рис. 2а).
Сосредоточенный момент или момент пары сил является силовым фактором. В конструкциях его обычно обозначают дугой со стрелкой (рис. 2б).
Распределённые нагрузки бывают линейные, поверхностные и объёмные. На рис. 1.2в приведен пример линейно распределенной нагрузки.
Л
инейно
распределённые
нагрузки характеризуются интенсивностью
q,
т. e. нагрузкой, приходящейся на единицу
длины. Она может приниматься постоянной
или переменной.
Поверхностно распределённые нагрузки распределены по какой-либо зоне поверхности пластины, оболочки, тела. Они также характеризуются интенсивностью q, но это уже нагрузка, приходящаяся на единицу площади конструкции.
Объёмно распределённые нагрузки распределены по объёму изучаемого тела. Они характеризуются интенсивностью нагрузки, приходящейся на единицу объёма тела. Примерами объёмной нагрузки являются массовые силы: сила тяжести, сила инерции.
Действующие на анализируемую конструкцию силы подразделяются также на активные и реактивные (или реакции связей).
При выборе расчётной схемы материала принимается ряд существенных гипотез:
1. Гипотеза сплошности − предполагает, что материал непрерывно заполняет весь объём тела.
2. Гипотеза однородности и изотропности − предполагает, что свойства материала одинаковы во всех точках тела (однородность) и не зависят от направления (изотропность).
3. Гипотеза малости деформаций − предполагает, что деформации (перемещения) конструкции при нагружении малы по сравнению с её характерными размерами.
4. Гипотеза упругости − полагает, что с достаточной для практических целей точностью можно считать деформации конструкции упругими, т. е. исчезающими после снятия внешней нагрузки. Это свойство проявляется в определенных пределах нагружения и трактуется в виде линейной зависимости между деформациями и внешними нагрузками.
С гипотезой упругости тесно связан постулат о принципе независимости действия сил, в котором предполагается, что результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке.
