- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
II. Основы теории механизмов и машин
1. Структура механизмов и машин
1.1. Основные понятия и определения
К основным понятиям данной темы курса относятся: машина, механизм, звено, кинематическая пара, кинематическая цепь.
Машина - это устройство, выполняющее механические движения для преобразования энергии, материалов и информации с целью замены или облегчения физического и умственного труда человека. В зависимости от основного функционального назначения различают: энергетические, технологические, транспортные и информационные машины. В энергетических машинах происходит преобразование энергии; в технологических - изменяются формы, размеры и состояние исходных материалов; с помощью транспортных машин происходит перемещение грузов, материалов, инструментов, людей и других объектов в пространстве с требуемой скоростью; в информационных машинах происходит преобразование вводимой информации для контроля, регулирования и управления технологическим процессом.
Механизмом называется устройство, предназначенное для преобразования движения одного или нескольких твердых тел в требуемые движения других твердых тел.
Твердое тело, входящее в состав механизма, называется звеном. Звено может состоять из одной или нескольких неподвижно соединенных деталей, движущихся как одно целое.
Подвижное соединение двух соприкасающихся звеньев называется кинематической парой. Кинематические пары различают по характеру соприкосновения звеньев: пару называют низшей, если элементы звеньев соприкасаются по поверхности, и высшей, если только по линиям или в точках. Одно из преимуществ низших пар по сравнению с высшими – возможность передачи больших сил, поскольку контактная поверхность соприкасающихся звеньев низшей пары может быть весьма значительна. Применение высших пар позволяет уменьшить трение в машинах и получать нужные, самые разнообразные законы движения выходного звена механизма путем придания определенной формы звеньям, образующих высшую пару.
Кинематические пары классифицируют по числу условий связи S (по числу ограничений, накладываемых кинематической парой на относительные движения звеньев, образующих данную кинематическую пару). По значению S определяют класс кинематической пары. При S=0 пары не существует, а имеются два тела, движущихся независимо друг от друга; при S=6 кинематическая пара превращается в жесткое соединение двух деталей. Чаще всего в механизмах встречаются вращательные и поступательные кинематические пары 5-го класса
Совокупность звеньев, образующих между собой кинематические пары, называется кинематической цепью. Различают замкнутые и незамкнутые, плоские и пространственные кинематические цепи. В каждом механизме есть одно неподвижное (или принимаемое за неподвижное) звено, называемое стойкой. Различают входные и выходные звенья механизма. Входным называют звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев. Выходным называют звено, совершающее движение, для выполнения которого предназначен механизм. По характеру движения звенья называют: кривошип – вращающееся звено рычажного механизма, которое может совершать полный оборот вокруг неподвижной оси; коромысло – вращающееся звено рычажного механизма, которое может совершать только неполный оборот вокруг неподвижной оси; шатун – звено рычажного механизма, образующего кинематические пары только с подвижными звеньями; ползун – звено рычажного механизма, образующего поступательную пару со стойкой; кулиса – звено рычажного механизма, вращающееся вокруг неподвижной оси и образующее с другим подвижным звеном поступательную пару.
Механизмы делятся на плоские и пространственные. Плоским называется механизм, точки звеньев которого движутся в одной или параллельных плоскостях.
К основным видам механизмов относятся: рычажные, кулачковые, зубчатые, фрикционные, цепные, ременные, гидравлические, пневматические и волновые.
Рычажными называют механизмы, в состав которых входят только низшие кинематические пары. Эти механизмы могут обеспечивать передачу значительных сил, т.к. в этих кинематических парах звенья соприкасаются по поверхностям. В виду ограниченного числа видов низших кинематических пар многие важные законы преобразования движения звеньев не могут быть получены с помощью рычажных механизмов. В этом плане большими возможностями обладают механизмы с высшими парами, которые, однако, менее износостойкие, чем низшие.
В системах управления широко применяются кулачковые механизмы. Кулачок – это звено, которому принадлежит элемент высшей пары. Разнообразие форм, которые можно придать кулачку, определяют большое разнообразие возможных преобразований движения. Одна из особенностей кулачковых механизмов состоит в том, что может быть обеспечено движение выходного звена с остановками за конечный промежуток времени при непрерывном движении входного.
Для передачи вращательного движения с изменением угловой скорости используются зубчатые, червячные, фрикционные, ременные и цепные передачи. В зубчатых механизмах передача вращательного движения происходит за счет взаимодействия зубьев (выступов) зацепляющихся колес. Во фрикционных механизмах передача вращательного движения происходит за счет сил трения, возникающих между соприкасающихся звеньев. В цепных и ременных передачах вращающиеся звенья соединяются соответственно с помощью цепей или ремней. Эти передачи используются при значительных расстояниях между осями вращающихся звеньев. В гидравлических механизмах преобразование движения происходит посредством твердых и жидких тел, а в пневматических - с помощью твердых и газообразных. Действие волновых передач основано на деформации отдельных звеньев. С помощью этих передач вращательное движение может быть передано через герметичную стенку.
При изображении механизма на чертеже различают его структурную (принципиальную) схему с применением условных обозначений звеньев и пар (без указания размеров звеньев) и кинематическую схему с размерами, необходимыми для кинематического расчета. На схемах звенья обозначают цифрами, а пары и различные точки звеньев – большими буквами латинского алфавита.
