- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
Теорема об изменении количества движения системы
Д
ля
каждой точки системы, находящейся под
действием внешних и внутренних сил,
имеем:
Проведя суммирование по всем точкам системы, получим:
И
спользуя
свойства внутренних сил системы и
определение количества движения
системы
,
окончательно
имеем:
Теорема об изменении количества движения системы: производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих на систему.
В
другой форме теорема выглядит так:
Дифференциал количества движения системы равен векторной сумме элементарных импульсов всех внешних сил, действующих на систему.
Теорема импульсов в конечной (интегральной) форме:
Изменение количества движения системы за какое-либо время равно векторной сумме всех импульсов внешних сил, действующих на систему за то же время.
В проекциях на оси координат
Видно, что внутренние силы не входят в теорему и не влияют на изменение количества движения системы.
Законы сохранения количества движения
Эти законы представляют собой частные случаи теоремы об изменении количества движения системы.
Если
то
т.е. если главный вектор внешних сил системы равен нулю, то количество движения системы постоянно по величине и направлению.
Если равна нулю проекция главного вектора внешних сил только на одну ось системы координат, то имеем Px=const, то есть проекция количества движения системы на ту же ось является постоянной величиной (сохраняется).
Е
сли
мы имеем тело, разрывающееся под действием
внутренних сил на две части, то полный
импульс системы, состоящей из двух
частей, сохраняется, то есть:
3.8. Теорема об изменении кинетической энергии Работа силы.
Элементарная работа силы равна скалярному произведению силы на дифференциал радиус-вектора точки приложения силы (рис.40).
Рис. 40
Элементарная работа силы равна также скалярному произведению элементарного импульса силы на скорость точки:
Е
сли
сила F
перпендикулярна
приращению радиус-вектора dr,
то элементарная работа силы равна нулю.
Полная работ силы:
Другое
определение:
,
где t=0
соответствует положению точки М0,
а момент времени t
– положению М.
Последняя формула удобна для вычисления работы силы, когда сила известна как функция времени.
Размерность работы [A]=1Дж=1Нм.
Мощность. Мощность силы или работоспособность какого-либо источника силы часто оценивают той работой, которую он может совершить за единицу времени.
Размерность мощности [W]=1Вт=1Дж/с.
Работа силы тяжести
В
принятой системе координат
(рис. 41
):
Px=0, Py=0, Pz= − mg.
Работа силы тяжести на перемещении М0М1:
Рис. 41
В системе точек для каждой точки работа Ai=mig(z0i-z1i), полная работа
Работа линейной силы упругости.
Линейная
сила упругости действует по закону Гука
,
где r
– расстояние от начальной точки М0,
где сила равна нулю,
до рассматриваемого положения М1, тогда работа
где с – постоянный коэффициент жесткости, λ - деформация (удлинение) пружины.
Кинетическая энергия.
Кинетической энергией Т материальной точки называют половину произведения массы точки на квадрат её скорости: T=½ mv2. Размерность кинетической энергии – 1Дж=1Н м.
Кинетической энергией системы Т называют сумму кинетичес-ких энергий всех n точек механической системы, то есть
Вычисление кинетической энергии системы
Разложим движение механической системы на переносное поступательное вместе с центром масс и относительное по отношению к системе координат, движущейся поступательно вместе с центром масс.
Запишем связь координат и скоростей точек системы в абсолютной (неподвижной) и подвижной системе отсчета:
Выражение для кинетической энергии системы может быть представлено в следующем виде:
В силу того, что начало подвижной системы отсчета, совмещено с центром масс системы точек
и третье слагаемое в предыдущей формуле обращается в ноль (выражение в круглых скобках в системе отсчета, связанной с центром масс, равно нулю).
В итоге получаем:
Это означает, что кинетическая энергия системы в абсолютном движении складывается из кинетической энергии центра масс, как если бы в нем была сосредоточена вся масса системы, и кинетической энергии системы относительно центра масс.
Примеры:
1
.
Кинетическая энергия твердого тела при
поступательном движении –
2
.
Кинетическая энергия твердого тела при
вращении вокруг неподвижной оси:
3. Кинетическая энергия твердого тела при плоском движении:
Теорема об изменении кинетической энергии точки
Умножим скалярно обе части второго закона Ньютона на dr
После несложных преобразований получим:
или
− мощность, подводимая к этой точке.
Интегрируя
то есть изменение кинетической энергии точки на каком-либо перемещении равно работе силы, действующей на точку на том же перемещении.
Теорема об изменении кинетической энергии системы точек
Для каждой точки системы имеем:
Здесь выразили равнодействующую силу для точки mk в виде суммы равнодействующих внешних F(e) и внутренних сил F(i), действующих на точку.
Проводя суммирование и вынося знак дифференциала за знак суммы, будем иметь:
или
Получили закон изменения кинетической энергии для системы точек: «Изменение кинетической энергии системы точек равно работе все внутренних и внешних сил на всех перемещениях всех точек». Работа внутренних сил не равна нулю, поскольку под действием одинаковых сил действия и противодействия точки разной массы имеют различные перемещения, и работа внутренних сил полностью не компенсируется.
Проведя интегрирование между начальным и конечным положением системы, будем иметь:
или
Для
абсолютно твердого тела
и
Имеем теорему в конечной форме: «изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек при том же изменении положения системы».
