- •I. Основы теоретической механики
- •1. Статика
- •Основные понятия
- •1.2. Аксиомы статики
- •3. Аксиома параллелограмма сил.
- •4. Аксиома о равенстве сил действия и противодействия.
- •5. Аксиома связей.
- •1.3. Теоремы статики
- •2. Теорема о трех силах.
- •1.4. Система сходящихся сил
- •1.5. Момент силы относительно точки и оси
- •Алгебраический момент силы относительно точки.
- •3. Момент силы относительно оси.
- •1.6. Приведение системы сил к простейшей системе
- •1.7. Условия равновесия систем сил Пространственная система сил
- •Кинематика
- •2.1. Основные понятия
- •2.2. Кинематика точки. Скорость и ускорение точки в декартовых координатах
- •2.3. Скорость и ускорение точки в естественной системе координат
- •2.4. Скорость и ускорение точки в полярных координатах
- •2.5. Скорость и ускорение точек в цилиндрических координатах
- •2.6. Сложное движение точки
- •2.7. Поступательное движение твердого тела
- •2.8. Вращение твердого тела вокруг неподвижной оси
- •2.9. Плоское движение твердого тела
- •2.10. Скорость точек тела при плоском движении Мгновенный центр скоростей
- •2.11. Ускорения точек при плоском движении тела Мгновенный центр ускорений
- •3. Динамика
- •3.1. Основные понятия
- •3.2. Классификация сил. Динамика материальной точки
- •3.3. Дифференциальные уравнения движения материальной точки. Две основные задачи динамики точки
- •3.4 Основные виды прямолинейного движения точки. Криволинейное движение
- •3.5. Простейшие свойства внутренних сил системы Механической системой называется любая совокупность материальных точек.
- •3.6. Дифференциальные уравнения движения системы
- •3.7. Теоремы об изменении количества движения и о движении центра масс Количество движения точки и системы
- •Теорема об изменении количества движения системы
- •В проекциях на оси координат
- •3.8. Теорема об изменении кинетической энергии Работа силы.
- •3.9. Потенциальное силовое поле и потенциальная энергия
- •3.10. Закон сохранения механической энергии
- •II. Основы теории механизмов и машин
- •1. Структура механизмов и машин
- •1.1. Основные понятия и определения
- •1.2. Структура механизмов
- •1.3. Принцип образования механизмов. Группа Ассура
- •1.4. Структурный анализ плоских рычажных механизмов
- •2. Кинематический анализ плоских рычажных механизмов
- •2.1. Задачи и методы
- •2.2. Графоаналитический метод
- •3.Силовой анализ плоских рычажных механизмов
- •3.1. Силы, действующие в машинах
- •3.2 Силовой расчет
- •3.3. Трение в механизмах
- •1.2. Моделирование и схематизация объектов и свойств материалов
- •1.3. Внутренние силовые факторы. Метод сечений. Виды деформаций
- •1.4. Понятие о деформациях
- •1.5. Понятие о напряжениях
- •1.6. О физической взаимосвязи напряжений и деформаций
- •1.7. Общие принципы расчёта элементов конструкций
- •2. Растяжение и сжатие
- •2.1.Определение продольной силы
- •2.2. Определение напряжения
- •2.3. Определение деформаций. Закон Гука
- •2.4. Испытание материалов на растяжение и сжатие
- •2.5. Коэффициент запаса, допускаемое напряжение
- •2.6. Проверочный и проектировочный расчёты на прочность и жёсткость
- •3. Геометрические характеристики плоских сечений
- •3.1. Статические моменты площади
- •3.2. Моменты инерции сечения
- •3.3. Моменты сопротивления сечений
- •3.4. Геометрические характеристики некоторых сечений
- •3.4.1. Сечение в форме прямоугольника
- •3.4.2. Сечение в форме полукруга и круга
- •4. Изгиб
- •4.1. Общие сведения
- •4.2. Внутренние силовые факторы при изгибе
- •4.3. Теорема д. И. Журавского
- •4.4. Нормальные напряжения при изгибе
- •4.5. Перемещения при изгибе. Дифференциальное уравнение упругой линии балки
- •5. Сдвиг и кручение
- •5.1. Сдвиг
- •5.2. Кручение
- •5.2.1. Определение крутящего момента
- •5.2.2. Перемещения при кручении
- •5.2.3. Напряжение
- •5.2.4. Условия прочности и жёсткости
- •6. Напряжённое и деформированное состояние в точке
- •6.1. Напряжённое состояние в точке
- •6.2. Напряжённое состояние при растяжении (сжатии)
- •6.3. Напряжения в наклонных сечениях при растяжении в двух направлениях
- •6.4. Определение напряжений на площадке произвольного положения
- •6.4. Теории прочности
- •III. Основы деталей машин и конструирования.
- •1. Общие вопросы проектирования и конструирования машин и механизмов
- •1.1. Основные элементы конструкций и их критерии работоспособности
- •1.2. Проектирование
- •1.3. Конструирование и стадии разработки конструкторской документации
- •1.4. Система автоматизированного производства
- •1.5. Взаимозаменяемость и стандартизация
- •1.6. Номинальные размеры и точность изготовления деталей
- •Вопросы для самопроверки
- •2. Соединения деталей машин
- •2.1.Неразъёмные соединения
- •2.1.1.Сварные соединения
- •2.1.2. Заклёпочные соединения
- •2.2. Разъёмные соединения
- •2.2.1. Резьбовые соединения
- •2 .2.2. Шпоночные и шлицевые соединения
- •Вопросы для самопроверки
- •Валы и оси. Опоры валов и осей
- •3.1. Назначение и классификация
- •3.2. Конструктивные элементы валов и осей, применяемые материалы.
- •3.3. Общие сведения об опорах валов и осей
- •3.4. Подшипники скольжения
- •3.4.1. Общие сведения
- •3.4.2. Конструкции подшипников скольжения
- •3.4.3. Расчёт и проектирование подшипников скольжения
- •3.5. Подшипники качения
- •3.5.1. Устройство подшипников качения и их классификация
- •3.5.2. Подбор подшипников качения
- •3.5.3. Определение коэффициентов X и y
- •Вопросы для самоконтроля
- •4.1. Назначение и классификация
- •4.2. Подбор муфт
- •4.3. Муфты постоянного сцепления
- •4.4. Муфты сцепные управляемые
- •4.5. Муфты сцепные самоуправляющиеся
- •Вопросы для самопроверки
- •5. Пружины и уплотнительные элементы
- •5.1. Общие сведения
- •5.2. Основные параметры витых пружин.
- •5.3. Расчёт цилиндрических витых пружин сжатия и растяжения
- •5.3.1. Определение диаметра проволоки пружины
- •5.3.2. Податливость и жёсткость пружины
- •Вопросы для самопроверки
- •6. Зубчатые передачи
- •6.1. Общие сведения
- •6.2. Требования, предъявляемые к зубчатым зацеплениям
- •6.3. Основной закон зацепления
- •6.4. Эвольвента окружности и её свойства. Уравнения эвольвенты
- •6.5. Эвольвентное зацепление
- •6.6. Геометрические параметры эвольвентных прямозубых передач
- •6.7. Коэффициент торцового перекрытия
- •6.8. Материалы зубчатых колёс
- •Вопросы для самопроверки
- •Содержание
I. Основы теоретической механики
1. Статика
Основные понятия
Материальная точка – объект бесконечно малых размеров, обладающий только одним свойством – массой.
Механическая система – любая совокупность материальных точек.
Абсолютно твердое тело – механическая система, расстояние между точками которой не изменяется при любых взаимодействиях.
Силой называют одну из векторных мер механического действия одного материального объекта на другой. Сила характеризуется модулем, точкой приложения, линией действия, следовательно, является величиной векторной.
Система сил – любая совокупность сил. Системы сил, оказывающие одинаковое действие на твердое тело, называются эквивалентными. Система сил, эквивалентная нулю, не изменяет состояния тела (механической системы) и называется уравновешенной.
1.2. Аксиомы статики
1. Аксиома о равновесии системы двух сил.
Для равновесия системы двух сил, приложенных к точкам твердого тела, необходимо и достаточно, чтобы эти силы были равны по модулю и действовали вдоль одной прямой, проходящей через точки их приложения, в противоположных направлениях. Это простейшая система сил, эквивалентная нулю (рис.1).
Рис. 1
Действие такой системы сил на покоящееся твердое тело не изменяет состояния покоя этого тела.
2. Аксиома о добавлении (отбрасывании) системы сил, эквивалентной нулю.
Если на твердое тело действует система сил, то к ней можно добавить (отбросить) систему сил, эквивалентную нулю. Полученная после добавления (отбрасывания) новая система сил является эквивалентной первоначальной системе сил.
3. Аксиома параллелограмма сил.
Две силы, действующие в одной точке твердого тела или на одну материальную точку, можно заменить одной равнодействующей силой, равной по модулю и направлению диагонали параллелограмма, построенного на заданных силах .
Справедливо и обратное положение: силу можно разложить по двум направлениям по правилу параллелограмма:
R = F1 + F2;
;
;
.
Проецирование силы на координатные оси (рис. 2):
Рис. 2
Если силы заданы проекциями на координатные оси, то их сумму можно найти аналитическим способом:
Зная модуль суммы и проекции её на координатные оси, можно найти и направление этого вектора.
4. Аксиома о равенстве сил действия и противодействия.
Силы взаимодействия двух твердых тел или точек (при взаимодействии путем соприкосновения или на расстоянии при посредстве силовых полей) равны по модулю и противоположны по направлению. Силы действия и противодействия всегда приложены к разным телам или различным взаимодействующим точкам одного и того же тела.
5. Аксиома связей.
Абсолютно твёрдое тело имеет в трёхмерном пространстве шесть степеней свободы, в двумерном – три степени свободы. Для того, чтобы ограничить перемещение тела на него накладывают то или иное количество связей.
Связью для твердого тела или материальной точки называют материальные объекты (тела или точки), которые ограничивают свободу перемещения твердого тела или материальной точки.
Всякую связь можно отбросить и заменить силой, реакцией связи R (в простейшем случае) или системой сил (в общем случае) (рис3.). Реакция гладкой поверхности или опоры направлена по общей нормали к поверхностям соприкасающихся тел в точке их касания и приложена в этой точке (рис.3).
Реакции связей считают силами пассивными в отличие от заданных, активных сил.
Рис. 3
Если соприкосновение происходит не в одной точке, а по некоторой поверхности, то реакция – система распределенных по поверхности сил, которые в случае малой зоны контакта можно заменить одной равнодействующей силой.
Типовые виды связей:
а) шарнирно-подвижная опора б) цилиндрический плоский
(Рис. 4) запрещает только шарнир (шарнирио – непод-
ертикальное перемещение вижная опора) (Рис. 5)
Рис. 4 Рис. 5
в) сферический (шаровой) шарнир г) жесткая (плоская) заделка (Рис.6) запрещает линейные (Рис.7) запрещает два линей-
переме щения вдоль трёх, ных и угловое перемещения
координатных осей
Рис. 6 Рис.7
где: R – реакция опоры; X, Y, Z – проекции этой силы на координатные оси.
В отличии от активных сил, приложенных к телу, реакции опор являются силами неизвестными. Определение реакций опор и является, обычно, основной задачей статики твёрдого тела.
