- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
2.3.3 Механическая характеристика асинхронного электродвигателя
М
еханическая характеристика М = f(n) асинхронного двигателя изображена на рис. 2.19.
Рис. 2.19. Механическая характеристика асинхронного двигателя
При пуске двигателя (n = 0) пусковой момент Mп в несколько раз превосходит номинальный момент Мн. Соответственно, пусковой ток много больше номинального. Затем, по мере разгона двигателя, момент сначала немного падает, а затем возрастает до Мmax. При дальнейшем разгоне момент двигателя уменьшается и, когда он сравняется со статическим моментом нагрузки Мст, (точка У), разгон прекращается и наступает установившееся движение со скоростью n0 > nдв ≥ nн.
Регулировать скорость движения можно, меняя частоту питающего двигатель переменного тока f (см. формулу 2.6) или меняя число пар полюсов р. Частоту меняют с помощью электронного устройства – преобразователя частоты. Число пар полюсов изменяют, переключая обмотки статора (только в двигателях, допускающих такое переключение). При изменении частоты характеристика двигателя смещается вдоль оси n (см. рис. 2.19).
2.3.4 Конденсаторные электродвигатели переменного тока
Обычный трехфазный асинхронный электродвигатель можно включить в однофазную сеть, искусственно создав недостающие фазы питания. Для этого используют фазосдвигающие конденсаторы С1 и С2 (рис. 2.20), причем конденсатор С2 включают только на время пуска двигателя.
Обеспечить равные токи в фазах по величине и форме и необходимый сдвиг фаз, как показано на рис. 2.12, с помощью конденсаторов невозможно. Всегда имеет место так называемый перекос фаз и, как следствие, потеря мощности и дополнительный нагрев двигателя. С этим приходится мириться в приводах небольшой мощности; в мощных двигателях такое решение недопустимо.
Рис. 2.20. Включение трехфазного двигателя в однофазную сеть
В приводах малой мощности, особенно в бытовой технике (например, в электромясорубке) находят широкое применение дешевые однофазные асинхронные конденсаторные электродвигатели. На статоре они имеют две обмотки, обеспечивающие вращающееся магнитное поле. Сдвиг фаз на 180º в обмотках осуществляется конденсатором С (рис. 2.21).
Рис. 2.21.Схема асинхронного конденсаторного электродвигателя
Так же, как и в предыдущем случае, обеспечить идентичность токов в фазах сложно, поэтому и эти двигатели имеют повышенный нагрев.
2.3.5 Коллекторные двигатели переменного тока
Такие двигатели широко используются в различных электроинструментах (электрические дрели, рубанки, пилы и др.). Благодаря высокой скорости вращения (более 10 000 об/мин) они имеют высокую мощность при малых габаритах и весе, что и требуется в ручных инструментах. Кроме того, эти двигатели могут работать при питании от однофазной бытовой сети.
По существу коллекторные двигатели переменного тока являются аналогом коллекторных двигателей постоянного тока, но питаются они переменным током. Такое возможно, если определенным образом соединить последовательно обмотку якоря и обмотку возбуждения (рис. 2.22). Тогда при перемене полюсов N→S→N→S с частотой 50 Гц синхронно меняется и направление тока в катушках якоря, а направление магнитодвижущих сил и моментов сохраняется. Тиристорный регулятор (ключ K) регулирует напряжение и, таким образом, изменяет скорость вращения от 0 до max.
Рис. 2.22. Схема коллекторного двигателя переменного тока
Некоторые из этих двигателей допускают двойное питание, т. е. их можно подключать к сетям и постоянного и переменного тока.
Очевидным недостатком коллекторных двигателей переменного тока является наличие коллектора и щеточного аппарата.
