- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
7.2 Установка и подключение датчиков
Датчики в приводе чаще всего сопрягаются по «входу» с механическими устройствами привода, а по «выходу» с аппаратурой контроля или управления приводом. Правильность сопряжений «входа и выхода» датчика существенно влияет на качество его работы.
7.2.1 Установка датчиков в приводах
Для измерения параметров движения какого-либо объекта в приводе датчик можно установить в разных местах. Встает вопрос: где именно расположить датчик, с каким звеном привода нужно связать его чувствительный элемент? Например, требуется измерять с высоким разрешением величину перемещения и точность позиционирования каретки в приводе, кинематическая схема которого изображена на рис. 7.8.
Рис. 7.8. Привод каретки:
1, 6 – датчики угловых перемещений; 2 – электродвигатель; 3 – редуктор; 4 – каретка; 5 – датчик линейных перемещений; 7 – ходовой винт
В данном приводе логичнее всего применить датчик линейных перемещений 5, а его чувствительный элемент (первичный преобразователь) соединить непосредственно с кареткой 4. Однако, это не всегда удобно, а иногда и вообще невозможно по ряду причин, а именно: датчики больших линейных перемещений с высокой разрешающей способностью дороги, громоздки, плохо компонуются и сложно соединяются с подвижным объектом. Поэтому рассматриваются другие варианты применения и установки датчика. Например, вместо датчика линейных перемещений применяют компактный и относительно дешевый датчик угловых перемещений, который соединяют с ходовым винтом 7 или с ротором двигателя 2. Если датчик 6 установить на винт 7, то угол поворота винта и соответственно ротора датчика
(7.1)
где s – перемещение каретки;
u1 – передаточное отношение между винтом и кареткой, u1 >> 1;
t – шаг винта;
z – число заходов винта.
Если датчик 1 установить на двигатель 2, то угол поворота ротора двигателя и соответственно ротора датчика
(7.2)
где u2 – передаточное отношение редуктора, u2 >> 1;
u – общее передаточное отношение механизма привода.
И в том и в другом случае между кареткой и датчиком присутствует механизм, который, с одной стороны, позволяет применить датчик угла вместо линейного датчика, а с другой стороны, механизм из-за геометрических неточностей, люфтов и деформаций создает дополнительную погрешность измерений.
При установке датчика на двигателе минимальное перемещение каретки, которое может зафиксировать датчик,
(7.3)
где – разрешающая способность датчика.
В этом случае при измерении перемещений разрешающая способность увеличивается благодаря механизму с высоким передаточным отношением u.
Точность работы привода характеризует погрешность позиционирования каретки
(7.4)
где 1, 2, 3 – погрешность позиционирования каретки, определяемая погрешностью датчика, погрешностью редуктора и погрешностью передачи винт-гайка, соответственно
(7.5)
где д – погрешность датчика;
р – погрешность редуктора, связанная, например, с зазорами деформациями в передачах;
в – погрешность передачи винт-гайка, связанная, например, с осевыми люфтами в гайке и опорах винта.
Таким образом, наличие механизма между датчиком и кареткой создает дополнительную погрешность привода 2 + 3 и эта погрешность тем больше, чем менее точен механизм. В данном случае наибольший вклад в погрешность позиционирования вносит механизм винт-гайка, поэтому этот механизм стараются сделать как можно точнее, например, используют ШВП.
Иногда, с целью увеличения чувствительности датчика без существенной потери точности измерений, датчик соединяют с объектом измерений специальной измерительной передачей, например, на основе зубчатых колес высокого класса точности.
Аналогично рассмотренному примеру существуют вопросы и при установке датчиков других типов: температуры, давления и др. Общее правило для этих датчиков следующее – чем «ближе» чувствительный элемент датчика расположен к объекту, параметры которого измеряются, чем меньше между объектом и чувствительным элементом промежуточных звеньев, тем точнее измеряются параметры объекта.
При использовании датчиков актуальны вопросы механического соединения датчика и объекта. Например, чем более плотно и жестко вибродатчик прикреплен к объекту, тем точнее будут его показания. Крепление тензорезистора к объекту также должно выполняться по специальной технологии.
При соединении с объектом датчиков, имеющих ротор, важно обеспечить точную передачу угла поворота от вала объекта к валу датчика. Такая точная передача угла возможна только при применении специальных соединительных муфт, у которых передаточное отношение u = 1 = const, специального крепления корпуса датчика и т. д.
Таким образом, при установке любого датчика на объект необходимо соблюдать определенные правила, которые часто оговариваются в технической документации конкретного датчика.
