- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
6.1.6 Рычажные механизмы
Шарнирные четырехзвенники (рис. 6.10, а), кривошипно-ползунные (рис. 6.10, б) и кулисные механизмы (рис. 6.10, в) применяются в приводах машин для преобразования вращательного движения кривошипа в возвратно-качательное или возвратно-поступательное движение исполнительного звена.
Рис. 6.10. Рычажные механизмы:
а – шарнирный четырехзвенник; б – кривошипно-ползунный механизм; в – кулисный механизм
В этих механизмах закон движения исполнительного звена полностью зависит от геометрии механизма – соотношения длин звеньев, взаимного расположения опор. Например, если в механизме, изображенном на рис. 6.10, б, опора О лежит на линии движения ползуна П и длина lш шатуна много больше длины lк кривошипа (lш >> lк), закон движения ползуна будет близок к гармоническому. Закон движения не зависит от масштаба механизма – длин звеньев, важно лишь их соотношение. Истинные значения длин звеньев выбираются исходя из множества факторов, главными из которых являются компоновка, силы в кинематических парах и звеньях, жесткость и точность механизма, динамика механизма, колебательные явления, технологичность деталей и стоимость изготовления и т. д. Создание оптимального механизма – сложная многофакторная задача, как и большинство задач в механике.
Передаточные
отношения в рычажных механизмах u
= к/из
(схемы
а,
в)
или u
= к/Vиз
(схема
б)
переменны, u
const
и
является функцией угла поворота кривошипа
u
= fu(к).
Также переменен и КПД механизма,
= = f(к).
Минимум КПД наблюдается в положениях
механизма с неблагоприятной передачей
сил, а именно при больших углах давления.
Поэтому при синтезе механизмов необходимо
стремиться к минимизации углов давления,
изменяя геометрию механизма. Допустимыми
обычно считаются углы давления порядка
30...40°.
Рычажные механизмы широко распространены в технике; от детских игрушек (танцующий Дед Мороз и т. п.) до мощных поршневых машин. Особенно распространен кривошипно-ползунный механизм (рис. 6.10, б). В поршневых двигателях этот механизм преобразует поступательное движение ползуна-поршня во вращательное движение кривошипа-коленчатого вала. В поршневых насосах и компрессорах все наоборот.
Типовым во множестве машин является механизм, схема которого представлена на рис. 6.11. Это самое простое устройство для преобразования поступательного движения двигателя 2 во вращательное движение исполнительного звена 1. Угол качания звена 1 здесь ограничен из-за низкого КПД при больших углах давления.
Рис. 6.11. Механизм для преобразования поступательного движения во вращательное:
1 исполнительное звено – рычаг; 2 двигатель (пневмоцилиндр, гидроцилиндр, соленоид и т. п.)
6.2 Механизмы шаговых перемещений
Эти механизмы предназначены для преобразования вращательного, качательного, возвратно-поступательного перемещений в однонаправленные вращательные или поступательные шаговые перемещения. Типовыми представителями этих устройств являются механизмы мальтийского креста и храповые механизмы.
6.2.1 Механизмы мальтийского креста
Механизмы мальтийского креста (рис. 6.12) являются, по существу, разновидностью кулисных механизмов (см. рис. 6.10, в). Роль кулисы выполняют по очереди пазы 1 мальтийского креста 2, а роль ползуна – цевка 4.
Рис. 6.12. Механизм мальтийского креста:
1 – паз; 2 – крест; 3 – кривошип; 4 – цевка
Непрерывно вращающийся кривошип 3 своей цевкой 4 входит в паз креста и поворачивает его на угол = 2/z, где z = 3…20 – число пазов креста. Затем цевка выходит из паза, и крест останавливается до момента входа цевки в следующий паз. После выхода цевки из паза крест оказывается «на свободе» и может самопроизвольно повернуться. Для предотвращения самопроизвольного поворота в механизм встраивается фиксатор. Обычно (но не всегда) фиксатор выполняется в виде неполного диска 5, входящего в дугообразные вырезы креста на время его "выстоя".
Таким образом, крест и приводимые им в движение детали совершают периодические (шаговые) повороты. Времена поворота и выстоя креста определяются скоростью вращения кривошипа и числом пазов креста. Движение креста, как кулисы, является неравномерным – с разгоном и торможением.
Передаточное
отношение механизма мальтийского креста
u const.
Также и КПД механизма
const.
Примерный вид графиков =
f1(),
=
f2(),,
= f3(),
где
– угол поворота креста,
–
угол поворота кривошипа, приведен на
рис. 6.13.
Максимальная угловая скорость креста равна
, (6.22)
где 1 – скорость вращения кривошипа;
(см. рис. 6.12).
Рис.
6.13. Перемещение, скорость и ускорение
мальтийского креста
Максимальное угловое ускорение креста
(6.23)
где
(6.24)
В начале и конце поворота креста имеют место скачки ускорения и, как следствие «мягкие» удары, вызывающие дополнительные динамические нагрузки в механизме.
Длины кривошипа R = O1A и стойки L = О1О2 связаны зависимостью R = Lsin(/z). Истинные размеры звеньев механизма выбираются исходя из: соображений компоновки, нагрузок в звеньях и шарнирах механизма, жесткости и точности механизма и др.
Механизм мальтийского креста широко применяется в транспортирующих устройствах технологических машин и линий, обеспечивая шаговое перемещение с плавным разгоном и торможением. На рис. 6.14, а изображена схема привода цепного линейного транспортера, а на рис. 6.14, б – схема привода кругового транспортирующего устройства – карусели.
а б
Рис. 6.14. Привод транспортирующего устройства:
а – линейного, б – кругового;
1 – цепной транспортер; 2 – мальтийский крест; 3 – кривошип; 4 – карусель; 5, 6 – зубчатая передача
Кривошип 3 мальтийского механизма закреплен на выходном валу редуктора P. Мальтийский крест в схеме а поворачивает звездочки цепного транспортера, а в схеме б поворачивает шестерню 6 зубчатой передачи. Передача позволяет изменить шаг поворота карусели по сравнению с шагом, определяемым числом пазов креста. Шаг поворота карусели, в этом случае, будет
(6.25)
где u – передаточное отношение зубчатой передачи.
В технологических машинах время выстоя транспортера используется для выполнения какой-либо операции – это рабочее время tp, а время движения – это потери времени, холостое время tx, поэтому стремятся увеличить tp и уменьшить tx.
Если кривошип мальтийского механизма, вращается с постоянной скоростью 1 = const, то угол поворота кривошипа п (см. рис. 6.12), соответствующий повороту креста на один шаг
(6.26)
Угол поворота кривошипа в, когда крест стоит
(6.27)
Время поворота креста
(6.28)
Время выстоя креста
(6.29)
Отношение времени поворота и выстоя
(6.30)
Из этой формулы следует: чем меньше пазов у креста, тем больше полезное время выстоя креста по сравнению со временем его движения. Однако с уменьшением числа пазов усиливается «мягкий» удар, поэтому кресты с числом пазов z < 4 не делают. При z = 4 K = 1/3. Это предельное для механизма мальтийского креста соотношение времен поворота и выстоя.
