Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техника приводов.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
14.72 Mб
Скачать

6.1.6 Рычажные механизмы

Шарнирные четырехзвенники (рис. 6.10, а), кривошипно-ползунные (рис. 6.10, б) и кулисные механизмы (рис. 6.10, в) применяются в приводах машин для преобразования вращательного движения кривошипа в возвратно-качательное или возвратно-поступательное движение исполнительного звена.

Рис. 6.10. Рычажные механизмы:

а – шарнирный четырехзвенник; б – кривошипно-ползунный механизм; в – кулисный механизм

В этих механизмах закон движения исполнительного звена полностью зависит от геометрии механизма – соотношения длин звеньев, взаимного расположения опор. Например, если в механизме, изображенном на рис. 6.10, б, опора О лежит на линии движения ползуна П и длина lш шатуна много больше длины lк кривошипа (lш >> lк), закон движения ползуна будет близок к гармоническому. Закон движения не зависит от масштаба механизма – длин звеньев, важно лишь их соотношение. Истинные значения длин звеньев выбираются исходя из множества факторов, главными из которых являются компоновка, силы в кинематических парах и звеньях, жесткость и точность механизма, динамика механизма, колебательные явления, технологичность деталей и стоимость изготовления и т. д. Создание оптимального механизма – сложная многофакторная задача, как и большинство задач в механике.

Передаточные отношения в рычажных механизмах u = к/из (схемы а, в) или u = к/Vиз (схема б) переменны, u  const и является функцией угла поворота кривошипа u = fu(к). Также переменен и КПД механизма,  = = f(к). Минимум КПД наблюдается в положениях механизма с неблагоприятной передачей сил, а именно при больших углах давления. Поэтому при синтезе механизмов необходимо стремиться к минимизации углов давления, изменяя геометрию механизма. Допустимыми обычно считаются углы давления порядка 30...40°.

Рычажные механизмы широко распространены в технике; от детских игрушек (танцующий Дед Мороз и т. п.) до мощных поршневых машин. Особенно распространен кривошипно-ползунный механизм (рис. 6.10, б). В поршневых двигателях этот механизм преобразует поступательное движение ползуна-поршня во вращательное движение кривошипа-коленчатого вала. В поршневых насосах и компрессорах  все наоборот.

Типовым во множестве машин является механизм, схема которого представлена на рис. 6.11. Это самое простое устройство для преобразования поступательного движения двигателя 2 во вращательное движение исполнительного звена 1. Угол качания звена 1 здесь ограничен из-за низкого КПД при больших углах давления.

Рис. 6.11. Механизм для преобразования поступательного движения во вращательное:

1  исполнительное звено – рычаг; 2  двигатель (пневмоцилиндр, гидроцилиндр, соленоид и т. п.)

6.2 Механизмы шаговых перемещений

Эти механизмы предназначены для преобразования вращательного, качательного, возвратно-поступательного перемещений в однонаправленные вращательные или поступательные шаговые перемещения. Типовыми представителями этих устройств являются механизмы мальтийского креста и храповые механизмы.

6.2.1 Механизмы мальтийского креста

Механизмы мальтийского креста (рис. 6.12) являются, по существу, разновидностью кулисных механизмов (см. рис. 6.10, в). Роль кулисы выполняют по очереди пазы 1 мальтийского креста 2, а роль ползуна – цевка 4.

Рис. 6.12. Механизм мальтийского креста:

1 – паз; 2 – крест; 3 – кривошип; 4 – цевка

Непрерывно вращающийся кривошип 3 своей цевкой 4 входит в паз креста и поворачивает его на угол  = 2/z, где z = 3…20 – число пазов креста. Затем цевка выходит из паза, и крест останавливается до момента входа цевки в следующий паз. После выхода цевки из паза крест оказывается «на свободе» и может самопроизвольно повернуться. Для предотвращения самопроизвольного поворота в механизм встраивается фиксатор. Обычно (но не всегда) фиксатор выполняется в виде неполного диска 5, входящего в дугообразные вырезы креста на время его "выстоя".

Таким образом, крест и приводимые им в движение детали совершают периодические (шаговые) повороты. Времена поворота и выстоя креста определяются скоростью вращения кривошипа и числом пазов креста. Движение креста, как кулисы, является неравномерным – с разгоном и торможением.

Передаточное отношение механизма мальтийского креста u  const. Также и КПД механизма   const. Примерный вид графиков  = f1(), = f2(),, = f3(), где  – угол поворота креста,  – угол поворота кривошипа, приведен на рис. 6.13.

Максимальная угловая скорость креста равна

, (6.22)

где 1 – скорость вращения кривошипа;

(см. рис. 6.12).

Рис. 6.13. Перемещение, скорость и ускорение мальтийского креста

Максимальное угловое ускорение креста

(6.23)

где

(6.24)

В начале и конце поворота креста имеют место скачки ускорения и, как следствие «мягкие» удары, вызывающие дополнительные динамические нагрузки в механизме.

Длины кривошипа R = O1A и стойки L = О1О2 связаны зависимостью R = Lsin(/z). Истинные размеры звеньев механизма выбираются исходя из: соображений компоновки, нагрузок в звеньях и шарнирах механизма, жесткости и точности механизма и др.

Механизм мальтийского креста широко применяется в транспортирующих устройствах технологических машин и линий, обеспечивая шаговое перемещение с плавным разгоном и торможением. На рис. 6.14, а изображена схема привода цепного линейного транспортера, а на рис. 6.14, б – схема привода кругового транспортирующего устройства – карусели.

а б

Рис. 6.14. Привод транспортирующего устройства:

а – линейного, б – кругового;

1 – цепной транспортер; 2 – мальтийский крест; 3 – кривошип; 4 – карусель; 5, 6 – зубчатая передача

Кривошип 3 мальтийского механизма закреплен на выходном валу редуктора P. Мальтийский крест в схеме а поворачивает звездочки цепного транспортера, а в схеме б поворачивает шестерню 6 зубчатой передачи. Передача позволяет изменить шаг поворота карусели по сравнению с шагом, определяемым числом пазов креста. Шаг поворота карусели, в этом случае, будет

(6.25)

где u – передаточное отношение зубчатой передачи.

В технологических машинах время выстоя транспортера используется для выполнения какой-либо операции – это рабочее время tp, а время движения – это потери времени, холостое время tx, поэтому стремятся увеличить tp и уменьшить tx.

Если кривошип мальтийского механизма, вращается с постоянной скоростью 1 = const, то угол поворота кривошипа п (см. рис. 6.12), соответствующий повороту креста на один шаг

(6.26)

Угол поворота кривошипа в, когда крест стоит

(6.27)

Время поворота креста

(6.28)

Время выстоя креста

(6.29)

Отношение времени поворота и выстоя

(6.30)

Из этой формулы следует: чем меньше пазов у креста, тем больше полезное время выстоя креста по сравнению со временем его движения. Однако с уменьшением числа пазов усиливается «мягкий» удар, поэтому кресты с числом пазов z < 4 не делают. При z = 4 K = 1/3. Это предельное для механизма мальтийского креста соотношение времен поворота и выстоя.