- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
4.2 Поворотные пневмодвигатели
Эти двигатели выполняются по двум схемам: двигатель на основе механизма зубчатая рейка-шестерня и двигатель с поворотной лопастью. Схема первого из них изображена на рис. 4.5.
Рис. 4.5. Схема пневмодвигателя с механизмом рейка-шестерня:
1, 2 – поршень; 3 – рейка; 4 – шестерня; 5 – вал; 6 – опора
Двигатель содержит поступательный пневмоцилиндр с двумя поршнями 1 и 2. К поршням прикреплена рейка 3, которая входит в зацепление с шестерней 4. Шестерня посажена на вал 5 с опорами 6.
Сжатый воздух подается попеременно в правую и левую полости цилиндра, поршни под воздействием воздуха перемещаются вместе с рейкой. Благодаря механизму рейка-шестерня поступательное движение рейки преобразуется во вращательное движение вала.
Угол поворота вала
φ = H/r, (4.1)
где Н – ход рейки;
r – радиус шестерни.
Схема двигателя с лопастью (такой двигатель часто называют поворотным цилиндром) изображена на рис. 4.6.
Рис. 4.6. Схема лопастного двигателя:
1 – цилиндрический корпус; 2 – лопасть; 3 – вал; 4 – перегородка; 5, 6 – уплотнения
Двигатель имеет цилиндрический корпус 1, лопасть 2, закрепленную на валу 3, и перегородку 4, разделяющую корпус с лопастью на две полости. Вал и лопасть относительно перегородки и корпуса герметизированы уплотнениями 5 и 6 сложной формы. При подаче сжатого воздуха в правую или левую полости лопасть с валом поворачиваются на угол, ограниченный перегородкой или внешними упорами, но не более чем на 270º. В перегородку встроен внутренний демпфер (на рисунке не показан). Часто этого демпфера не хватает для гашения кинетической энергии T = Jω2/2 при вращении, поэтому предусматривают наружные демпферы, сблокированные с внешними регулируемыми упорами крайних угловых положений вала.
Закон движения поршня (или лопасти) в пневмоцилиндре двухстороннего действия зависит от множества факторов, главными из которых являются перепад давления в полостях цилиндра, активная площадь поршня, инерционность нагрузки, выражаемая в виде массы или момента инерции перемещаемого объекта, статическая (не зависящая от ускорения) составляющая нагрузки. Если количество воздуха, поступающего в цилиндр в единицу времени (расход воздуха), не ограничивает скорость перемещения поршня, то сила, действующая на поршень
Fц = pS = const, (4.2)
где p – давление воздуха на поршень;
S – площадь поршня,
а график V = f(t) выглядит, как и при равноускоренном движении (рис. 4.7, а).
а б
Рис. 4.7. Скорость штока пневмоцилиндра:
а – не ограничена расходом воздуха; б – ограничена расходом воздуха
Время перемещения штока на длине хода H
(4.3)
где a = (Fц – Fст)/m – ускорение перемещаемого объекта;
m – масса объекта;
Fст – статическая сила нагрузки.
Скорость в конце хода
Vmax
2Vср
= 2Н/t
=
. (4.4)
Если скорость перемещения поршня ограничена расходом воздуха, поступающего в цилиндр или выходящего из него (в случае подпора), то зависимость V = f(t) приобретает вид, как на рис. 4.7, б1.
В начале движения скорость резко увеличивается, а затем стабилизируется на уровне, определяемом расходом сжатого воздуха
Vmax = H/t = Qр/S, (4.5)
где Qр – расход сжатого воздуха.
