- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
3.3.2 Распределители
Распределители рабочей жидкости предназначены для выключения, переключения и регулирования потоков рабочей жидкости в гидравлических установках. Они бывают непрерывного и дискретного действия. Распределители непрерывного действия имеют, наряду с двумя фиксированными конечными положениями, множество не фиксированных промежуточных положений, обеспечивающих разную степень дросселирования потока рабочей жидкости и, соответственно, разное давление и расход жидкости в гидродвигателях гидравлических установок. К таким распределителям относятся сервоклапаны и распределители с пропорциональным управлением, и применяются они в гидравлических сервоприводах, например, в самолетах.
Распределители дискретного действия имеют фиксированное количество позиций при переключении. Эти распределители изображают на гидравлических схемах несколькими квадратами, расположенными вплотную друг к другу (рис. 3.19).
а б в г
Рис. 3.19. Символьное изображение распределителей в гидравлических схемах:
а 2/2 с кнопкой; б – 3/2 с толкателем; в – 4/2 с электромагнитом и ручным дублированием; г – 4/3 с рукояткой и фиксатором
Число квадратов указывает на количество возможных положений запорно-регулирующего элемента распределения. Стрелки в квадратах указывают направление течения рабочей жидкости. Линии показывают, каким образом связаны между собой каналы распределителя в различных положениях запорно-регулирующего элемента. Буквами P, A, B, T, L обозначают входы и выходы (штуцеры) распределителя. На гидравлических схемах распределители показывают в нейтральном или исходном положении, когда управляющее воздействие отключено. Другие положения, когда управляющее воздействие включено, получают сдвигом квадратов (обычно мысленно) на один шаг (рис. 3.20).
При выключенном управляющем воздействии пружина 1 поставила запорно-регулирующий элемент в исходное положение (рис. 3.20, а), напорная линия Р соединена с рабочей линией А. При включенном управляющем воздействии (нажата кнопка 2, рис. 3.20, б) напорная линия Р отсоединена от рабочей линии А.
1 2 |
А
|
а б
Рис. 3.20. Положения запорно-регулирующего элемента:
а управляющее воздействие выключено; б включено
Управляющее воздействие может осуществляться мускульной силой человека через кнопку, рукоятку, педаль или внешним механизмом: рычагом, толкателем, кулачком и т. п. или двигателем: электромагнитом, гидроцилиндром и т. п. На рис. 3.19, а обозначена кнопка, на рис. 3.19, б толкатель, на рис. 3.19, в электромагнит с ручным дублированием, на рис. 3.19, г рукоятка с фиксатором положений.
В названии распределителей всегда сначала указывают количество присоединяемых линий, а затем количество положений, которые может занимать запорно-регулирующий элемент распределителя. Поэтому распределители на рис. 3.19 имеют следующие обозначения: на рис. 3.19, а – распределитель 2/2, на рис. 3.19, б – 3/2, на рис. 3.19, в – 4/2, на рис. 3.19, г – 4/3 (читается распределитель "четыре на три").
Распределители, как и клапаны давления, могут быть седельного (клапанного) или золотникового типа. У первых в качестве запорно-регулирующего элемента используются шарик, конус или диск, которые прижимаются к опорной поверхности седла. У вторых в качестве запорно-регулирующего элемента используется цилиндрический или дисковой золотник. Распределители клапанного типа обеспечивают герметичное закрытие, мало чувствительны к загрязнениям, но не могут иметь более трех линий и двух положений.
Распределители золотникового типа могут иметь много линий и положений, но имеют утечки и перетечки рабочей жидкости и чувствительны к загрязнениям.
Распределитель 4/2 золотникового типа изображен на рис. 3.21.
Рис. 3.21. Распределитель 4/2 золотникового типа
В выключенном состоянии, как изображено на рисунке, напорная линия Р соединена с рабочей линией В, а линия А соединена с линией слива Т. Утечки по торцам золотника собираются отводом L. Во включенном состоянии, кнопка нажата, напорная линия соединяется с линией А, а линия В соединяется со сливом Т.
Распределитель 2/2 клапанного типа с фиксацией положений изображен на рис. 3.22.
Рис. 3.22. Распределитель 2/2 клапанного типа с фиксацией положений:
1 – рукоятка; 2 – фиксатор; 3 – клапан; 4 – седло; 5 - пружина
В исходном состоянии пружина 5 поджимает клапан 3 к седлу 4, линия Р закрыта. Если нажать на рукоятку 1 и сжать пружину, клапан откроется и благодаря фиксатору 2 останется в положении «открыто», линия Р соединится с линией А. Для возврата в исходное состояние надо вытянуть рукоятку 1 влево.
Для механического (не ручного) перемещения золотника или клапана чаще всего используют соленоид (электромагнит) постоянного или переменного тока, заполненный гидравлическим маслом («мокрый») или без заполнения («сухой»). Чаще используется электромагнит постоянного тока с заполнением специальным маслом (рис. 3.23).
При подаче в обмотку 5 постоянного электрического тока сердечник 3 втягивается и вместе с плунжером 7 перемещает золотник 8 вправо. Обратный ход золотника осуществляется за счет встроенной в распределитель пружины или за счет другого электромагнита, расположенного на другом конце золотника.
Такой, заполненный маслом электромагнит имеет герметичную, коррозионностойкую конструкцию и обеспечивает плавное, безударное переключение золотника.
В устройстве управления гидроцилиндром электромагнит с золотником играет роль преобразователя сигнала управления (электрический сигнал в гидравлический сигнал); соответственно распределитель с электромагнитом называют электрогидравлическим.
Рис. 3.23. Электромагнит распределителя:
1 кнопка ручного (нештатного) управления; 2 толкатель ручного управления; 3 стальной сердечник; 4 гильза из немагнитного материала; 5 обмотка электромагнита; 6 масло; 7 плунжер-толкатель; 8 золотник; 9 – корпус-магнитопровод; 10 – линии магнитного поля
Электромагнит 1 (рис. 3.24) включается в цепь питания 3 через контакт 2 реле. Реле, в свою очередь, подключают к электрическому или электронному устройству управления, например контроллеру.
24 В
3
0
1
2
Рис. 3.24. Электрическая схема подключения электромагнита распределителя:
1 – электромагнит; 2 – контакт реле; 3 – цепь питания
Здесь реле играет роль усилителя сигнала управления. Распределитель можно подключить напрямую к контроллеру, если в него встроен преобразователь и усилитель сигнала управления – "пилотный" электромагнитный клапан в первом каскаде управления (преобразователь) и гидравлический усилитель во втором каскаде. На гидравлической схеме распределитель с обычным электромагнитным управлением изображается как на рис. 3.25, а, а с пилотным управлением – как на рис. 3.25, б.
Рис. 3.25. Изображение распределителей с электромагнитом и пилотным управлением
