- •Содержание
- •Введение
- •1 Структура и Основные технические характеристики приводов машин
- •2 Электропривод
- •2.1 Виды и принцип действия электродвигателей
- •2.2 Электродвигатели постоянного тока
- •2.2.1 Устройство типового двигателя постоянного тока
- •2.2.2 Высокомоментные двигатели
- •2.2.3 Малоинерционные двигатели
- •2.2.4 Вентильные обращенные двигатели постоянного тока
- •2.2.5 Механическая характеристика двигателя постоянного тока
- •2.3 Электродвигатели переменного тока
- •2.3.1 Трехфазные асинхронные электродвигатели
- •2.3.2 Устройство асинхронного двигателя
- •2.3.3 Механическая характеристика асинхронного электродвигателя
- •2.3.4 Конденсаторные электродвигатели переменного тока
- •2.3.5 Коллекторные двигатели переменного тока
- •2.3.6 Синхронные вентильные электродвигатели переменного тока
- •2.3.7 Шаговые электродвигатели
- •1, 2, 3, 4 – Зубчатый магнитопровод; 5, 6, 7, 8 – обмотки
- •2.4 Линейные электродвигатели
- •2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
- •2.6 Выбор электродвигателя
- •2.7 Устройства управления электродвигателями
- •2.7.1 Релейные устройства управления
- •2.7.2 Преобразователи напряжения
- •2.7.3 Преобразователи частоты
- •3 Гидропривод
- •3.1 Гидростанция
- •3.2 Гидродвигатели
- •3.2.1 Линейные гидроцилиндры
- •3.2.2 Выбор типового гидроцилиндра
- •3.2.3 Поворотные гидродвигатели
- •3.2.4 Гидравлические моторы
- •3.3 Управление гидродвигателями
- •3.3.1 Клапаны давления
- •3.3.2 Распределители
- •3.3.3 Запорные клапаны
- •3.3.4 Гидроаппараты управления расходом
- •3.3.5 Выбор гидроаппаратов
- •4 Пневмопривод
- •4.1 Типовые пневмодвигатели
- •4.2 Поворотные пневмодвигатели
- •4.3 Специальные пневмодвигатели
- •4.3.1 Пневмоцилиндры больших усилий
- •4.3.2 Пневмоцилиндры малого диаметра
- •4.3.3 Параллельные пневмоцилиндры
- •4.3.4 Многопозиционные пневмоцилиндры
- •4.3.5 Пневмоцилиндры с вводом воздуха через шток
- •4.3.6 Бесштоковые пневмоцилиндры
- •4.4 Стыковка пневмодвигателя с механизмом
- •4.5 Выбор пневмодвигателя
- •4.6 Управление пневмодвигателями
- •5 Вибропривод
- •5.1. Принципы вибротранспортирования
- •5.2 Устройство вибротранспортеров
- •6 Механизмы приводов
- •6.1 Механизмы для преобразования вида движения
- •6.1.1 Механизмы на основе передачи рейка-шестерня
- •6.1.2 Механизмы на основе передачи винт-гайка
- •6.1.3 Механизмы с передачей звездочка-цепь
- •6.1.4 Механизмы с передачей зубчатый шкив-зубчатый ремень
- •6.1.5 Механизмы с кулачком и копиром
- •6.1.6 Рычажные механизмы
- •6.2 Механизмы шаговых перемещений
- •6.2.1 Механизмы мальтийского креста
- •6.2.2 Храповые механизмы
- •6.3 Редукторы и мультипликаторы
- •6.3.1 Редукторы
- •6.3.2 Мультипликаторы
- •6.4 Механизмы для передачи движения на расстояние
- •6.4.1 Механизмы для передачи вращения
- •6.4.2 Механизмы для передачи поступательного движения
- •6.4.3 Механизмы для передачи движения через шарниры
- •6.5 Механизмы тормозов, фиксаторов и стопоров
- •1 Набор фрикционных дисков; 2 фланец; 3 полый вал
- •6.32. Погрешность стопорения каресели
- •7 Датчики приводов
- •7.1 Основные характеристики датчиков
- •7.2 Установка и подключение датчиков
- •7.2.1 Установка датчиков в приводах
- •7.2.2 Подключение и питание датчиков
- •7.3 Датчики положения
- •7.3.1 Микровыключатели и герконы
- •7.3.2 Потенциометрические датчики положения
- •7.3.3 Индуктивные датчики
- •7.3.4 Емкостные датчики
- •7.3.5 Оптические датчики
- •7.4 Датчики угла поворота
- •7.4.1 Оптические инкрементальные энкодеры
- •7.4.2 Оптические абсолютные энкодеры
- •7.4.3 Резольверы
- •7.5 Датчики скорости
- •7.5.1 Датчики угловой скорости
- •7.5.2 Датчики линейной скорости
- •7.6 Датчики ускорения (акселерометры)
- •7.6.1 Емкостные акселерометры
- •7.6.2 Тензорезистивные акселерометры
- •7.6.3 Пьезоэлектрические акселерометры
- •7.7 Датчики силы и момента
- •7.7.1 Тензометрические датчики силы
- •7.7.2 Тензометрические датчики крутящего момента
- •7.7.3 Пьезоэлектрические датчики силы
- •7.8 Датчики давления
- •7.8.1. Манометры
- •7.8.2. Реле давления
- •7.8.3 Полупроводниковые датчики давления
- •7.8.4 Пьезорезистивные датчики давления
- •7.9 Датчики температуры
- •Библиографический список
- •Приложение. Формулы техники приводов
- •1. Масса, момент инерции
- •1.1 Масса и момент инерции детали
- •1.2 Приведение масс и моментов инерции
- •2 Перемещение, скорость, ускорение
- •2.1 Аппроксимация законов движения с ускорением
- •2.2 Движение точки звена по окружности
- •3 Сила, момент силы
- •4 Передаточное отношение
- •Приводы технологических машин
- •195251, Санкт-Петербург, Политехническая ул., 29
2.4 Линейные электродвигатели
Практически любой из рассмотренных выше вращательных электродвигателей можно преобразовать в двигатель поступательный с линейным перемещением якоря. Принцип преобразования иллюстрируется на рис. 2.24.
Вращательный двигатель (рис. 2.24, а) кольцевой структуры можно условно разрезать по плоскости А и развернуть кольцо в плоскость (рис. 2.24, б).
статор
ротор
ротор
статор
б
а
Рис. 2.24. Принцип преобразования вращательного двигателя (а) в поступательный (б)
Такой двигатель будет иметь ограниченное перемещение S и ограниченную переменную скорость V, поскольку большую скорость на небольшом перемещении получить невозможно. Электромагнитные силы F также ограничены, как и во вращательных машинах. Поэтому линейные двигатели не могут иметь большую мощность P= FV.
Вместе с тем они перспективны, так как позволяют отказаться в приводах от механизмов преобразования вращательного движения в поступательное. В настоящее время форсированные по усилию линейные двигатели применяются в быстродействующих приводах станков, роботов и других машин. Форсирование осуществляется, в основном, применением «сильных» магнитов (высокая магнитная индукция В) и многократным увеличением силы тока в проводах при условии эффективного охлаждения, вплоть до охлаждения жидким азотом. Сложность и, соответственно, стоимость линейных двигателей существенно выше, чем у вращательных машин, особенно если они оснащены собственными поступательными опорами и направляющими.
2.5 Стыковка электродвигателя с механизмом. Мотор-редукторы
Вопросы стыковки и согласования узлов привода всегда были актуальны и трудоемки. Особенно актуальны, они стали сейчас, когда привод собирается, в основном, из покупных узлов. Рассмотрим вопрос стыковки на примере соединения электродвигателя с редуктором (рис. 2.25).
3
1
5
6
2
е
4
Рис. 2.25. Схема стыковки электродвигателя с редуктором:
1 – вал электродвигателя; 2, 5 – опоры; 3, 6 – корпус; 4 – вал редуктора
Вал 1 электродвигателя имеет опоры 2, расположенные в корпусе 3. Входной вал 4 редуктора имеет опоры 5, расположенные в корпусе 6. Если опоры 2 и 5 существенно несоосны, то жесткое соединение валов приведет к большим реакциям в опорах и подшипники либо быстро износятся, либо их заклинит. Обеспечить высокую соосность опор, расположенных в разных корпусах, сложно. Всегда есть радиальное смещение осей опор е и угловое смещение α. Поэтому валы соединяют не жестко, а с помощью различных подвижных муфт, «развязывающих» валы (и это главное назначение муфт, а не только передача вращения с одного вала на другой). Типовая компоновка привода с двигателем и редуктором на лапах изображена на рис. 2.26.
3
1
4
5
6
2
Рис. 2.26. Компоновка привода с двигателем и редуктором на лапах: 1 – электродвигатель на лапах; 2 – тормоз внешний; 3 – муфта; 4 – редуктор; 5 – подставка для совмещения осей; 6 – рама
Такая компоновка имеет ряд недостатков:
при больших скоростях вращения муфты работают нормально, без вибраций, только при небольших несоосностях соединяемых валов; обеспечить малую несоосность сложно;
конструкция привода в целом получается громоздкой и неудобной для встраивания в машину.
Поэтому, современные приводы стараются строить по-другому, например, как показано на рис. 2.27.
1
7
6
2
4
5
10
8
9
3
Рис. 2.27. Мотор-редуктор (в различных положениях):
1 – двигатель; 2 – фланец; 3 – редуктор; 4 – адаптер; 5 – гнездо; 6 – тормоз; 7 – датчик; 8 – выходной вал редуктора; 9 – закладной вал; 10 – лапа
Здесь двигатель 1 имеет фланцевое исполнение и закреплен за фланец 2 на редукторе 3 непосредственно или через переходник (адаптер) 4. Компенсирующую муфту в этом случае можно исключить.
При наличии центрирующих элементов на стыкуемых деталях и высокой точности изготовления этих деталей можно обеспечить необходимую соосность соединяемых валов. Вал двигателя в этом случае соединяется с валом редуктора жестко, например, вал двигателя вставляется в гнездо 5 входного вала редуктора. Если в приводе необходим тормоз 6 и (или) датчик 7 угла поворота и скорости вала двигателя, их встраивают внутрь двигателя. Подобную компактную конструкцию называют мотор–редуктор.
Выходной вал редуктора 8 часто выполняют полым. Тогда в этом валу можно закрепить закладной вал 9, хвостовик которого может быть любым, по желанию конструктора. Лапы 10 на редукторе выполняют по периметру корпуса, что позволяет закреплять мотор-редуктор в разных положениях. Все это существенно упрощает встраивание привода в машину.
В маломощных мотор-редукторах все функциональные элементы часто располагаются в едином корпусе (рис. 2.28).
1
2
3
4
5
Рис. 2.28. Мотор-редуктор в едином корпусе:
1 – корпус; 2 – датчик угла поворота или датчик скорости; 3 – электродвигатель; 4 – дисковый электромагнитный тормоз; 5 – планетарный редуктор
И только мощные тяжелые приводы по-прежнему в основном компонуют по схеме, приведенной на рис. 2.26.
