- •1. Строение аксона и дендрита.
- •2. Дистантные взамодействия между нейронами.
- •3. Нейромедиаторы, классификация, функции.
- •4. Строение клеточной мембраны. Транспорт ионов через мембрану. Виды транспорта ионов.
- •5. Законы раздражения. Зависимость между силой и длительностью раздражения.
- •6. Мембранный потенциал. Механизм его возникновения.
- •7. Потенциал действия. Механизм возникновения, фазы потенциала действия.
- •8. Нейрон. Строение, функции, классификация нейронов. Нейроглия. Сроки миелинизации нервных волокон.
- •9. Механизмы и законы проведения возбуждения по нервному волокну.
- •10. Строение химического синапса. Понятие о нейромедиаторах, их виды. Механизм проведения возбуждения и торможения через синапс.
- •11. Структурно-функциональная характеристика клетки как основной единицы нервной ткани. Морфофункциональная характеристика глиальных клеток.
- •12. Торможение в цнс. Его значение и механизмы.
- •13. Нейрон. Нейронные сети, соединения клеток.
- •14. Группы нервных волокон и форма пд. Следовые потенциалы.
- •15. Ионные каналы и ионные насосы.
- •16. Свойства перехватов Ранвье.
- •17. Виды нервной памяти, система памяти.
- •18. Строение и функциональная роль электрического синапса.
- •21. Электротонический потенциал (местное возбуждение)
- •22. Потенциал покоя нервной клетки.
- •23. Механизм распространения возбуждения по немиелиновому нервному волокну
- •24. Ионно-мембранная теория потенциала покоя и потенциала действия
- •25. Основные свойства нервной клетки
- •26. Синаптическое торможение Синаптическое торможение - процесс в центральной нервной системе, основанный на взаимодействии медиатора со специфическими молекулами постсинаптической мембраны.
- •27.Пресинаптическое и постсинаптическое торможение
- •28. Возвратное торможение.(?Гиппокамп и образная память)
- •29. Синаптическая пластичность как основа когнитивной функции нервной системы
- •30. Формы синаптической пластичности
- •31. Суммация. Окклюзия. Утомление синаптической передачи
- •32. Потенциация, посттетаническая потенциация (сенситизация).
- •33. Депрессия и привыкание (габитуация).
- •34. Nmda- и ampa–рецепторы – их роль в возникновении и проявлении долговременной потенциации.
- •35. Ионотропные и метаботропные рецепторы
- •36. Механизм активации глутаматных рецепторов. Nmda-рецептор. Амра-рецептор.
- •37. Общие характеристики структуры и функции ионотропных рецепторов
- •38. Метаботропные рецепторы
- •39. Реверберационная гипотеза природы кратковременной памяти. Круг Пейпеца.
- •40. Взаимодействие медиатора с рецепторами постсинаптической мембраны.
- •42. Консолидация памяти.
- •43. Механизм образования кратковременной и долговременной памяти
- •44. Участие ионов кальция в долговременной потенциации.
- •45. Механизмы памяти (? Теория памяти э.Кендела, Роль гиппокампа в механизмах памяти?)
- •48. Функции сенсорных систем
- •49. Общие принципы конструкции и организации сенсорных систем
- •50. Общий план строения сенсорной системы
- •51. Принципы организации сенсорных путей
- •52. Принцип двойственности проекций сенсорной системы
- •53. Принцип соматотопической организации.
- •54. Сенсорная адаптация
- •55. Рецепторы в сенсорной системе
- •56. Рецепторный потенциал
- •57. Абсолютный и дифференциальный (разностный) пороги.
- •58. Адаптация рецепторов в сенсорной системе
- •60. Принцип нисходящего контроля сенсорной системы.
- •61. Первичные, вторичные, третичные проекции сенсорных систем
- •62. Нейромедиаторы и нейромодуляторы
- •63.Роль дофаминовой системы в деятельности мозга
- •64. Техника регистрации электроэнцефалограммы.
- •65. Основные ритмы электроэнцефалограммы человека. Артефакты, возникающие во время регистрации электроэнцефалограммы.
- •74.Позитронно-эмиссионная томография. Физические основы метода. Применение в
- •1. Свойства возбудимых тканей: раздражимость, возбудимость, проводимость, лабильность.
- •2. Виды раздражителей: адекватные и неадекватные, пороговые, подпороговые, сверхпороговые.
28. Возвратное торможение.(?Гиппокамп и образная память)
Нейроны ЦНС могут тормозить сами себя путём отрицательной обратной связи. Так, мотонейроны спинного мозга сразу после отхождения аксона от тела нервной клетки, посылают возвратные коллатерали, образующие синапсы с тормозными вставочными нейронами (клетки Реншоу). Клетки Реншоу иннервируют мотонейроны, направившие к ним возвратные коллатерали. Этот нейронный круг с обратной связью работает следующим образом. Мотонейрон, посылая сигналы к мышцам, одновременно активирует через возвратную коллатераль клетку Реншоу. Возбуждённая клетка Реншоу выделяет из пресинаптических терминалей глицин, и под его влиянием замедляются или тормозятся разряды мотонейрона. Возвратное торможение наблюдается также в коре больших полушарий и лимбической системе.
29. Синаптическая пластичность как основа когнитивной функции нервной системы
В 1973 году Блисс и Ломо опубликовали работу, в которой показали, что при интенсивной активности эффективность передачи сигнала в возбуждающих синапсах значительно повышается. Этот феномен длился часы после эпизода гиперактивности и был назван долговременной потенциацией. Затем была открыта долговременная депрессия синаптической передачи.
Синаптическая пластичность – это возможность изменения силы синапса в ответ на активацию постсинаптических рецепторов. Она считается основным механизмом, с помощью которого реализуется феномен памяти и обучения. Этот механизм характерен для всех организмов, обладающих нервной системой и способных хотя бы ненадолго чему-либо научиться. После выброса нейротрансмиттера в синаптическую щель он активирует рецепторы постсинаптической клетки, что приводит к передаче нервного импульса или его ослаблению (в зависимости от природы рецепторов и нейротрансмиттера).
30. Формы синаптической пластичности
кратковременная (секунды, минуты);
долговременная (часы, дни, месяцы).
Облегчение. В процессе активности в синапсах с исходно низким уровнем секреции нередко происходит увеличение амплитуды постсинаптического потенциала (ПСП). Этот процесс — облегчение — имеет пресинаптическую природу и объясняется теорией «остаточного кальция». Согласно этой теории, в процессе высокочастотной активности в пресинаптической терминали наблюдается повышение концентрации Са2+, вследствие чего происходит увеличение вероятности освобождения квантов нейромедиатора.
Потенциация, посттетаническая потенциация (сенситизация). Увеличение ПСП при высокочастотной активности может иметь и постсинаптическую природу. Такой вид пластичности связан с повышением чувствительности постсинаптических рецепторов к нейромедиатору и называется потенциацией. Величина ПСП может некоторое время (секунды и минуты) оставаться повышенной и после окончания тетанической активности. Это посттетаническая потенциация (в ЦНС — сенситизация).
Депрессия и привыкание (габитуация). В синапсах с исходно высоким уровнем секреции высокочастотная активность может приводить к уменьшению величины ПСП. Этот процесс — депрессия — связан преимущественно с истощением запаса нейромедиатора в пресинаптическом нервном окончании. Депрессия является одним из механизмов привыкания (габитуации).
Долговременная потенциация — быстро развивающееся устойчивое усиление синаптической передачи в ответ на высокочастотное раздражение. Этот вид пластичности может продолжаться дни и месяцы. Долговременная потенциация наблюдается во всех отделах ЦНС, но наиболее полно изучена на глутаматергических синапсах в гиппокампе.
