- •1. Строение аксона и дендрита.
- •2. Дистантные взамодействия между нейронами.
- •3. Нейромедиаторы, классификация, функции.
- •4. Строение клеточной мембраны. Транспорт ионов через мембрану. Виды транспорта ионов.
- •5. Законы раздражения. Зависимость между силой и длительностью раздражения.
- •6. Мембранный потенциал. Механизм его возникновения.
- •7. Потенциал действия. Механизм возникновения, фазы потенциала действия.
- •8. Нейрон. Строение, функции, классификация нейронов. Нейроглия. Сроки миелинизации нервных волокон.
- •9. Механизмы и законы проведения возбуждения по нервному волокну.
- •10. Строение химического синапса. Понятие о нейромедиаторах, их виды. Механизм проведения возбуждения и торможения через синапс.
- •11. Структурно-функциональная характеристика клетки как основной единицы нервной ткани. Морфофункциональная характеристика глиальных клеток.
- •12. Торможение в цнс. Его значение и механизмы.
- •13. Нейрон. Нейронные сети, соединения клеток.
- •14. Группы нервных волокон и форма пд. Следовые потенциалы.
- •15. Ионные каналы и ионные насосы.
- •16. Свойства перехватов Ранвье.
- •17. Виды нервной памяти, система памяти.
- •18. Строение и функциональная роль электрического синапса.
- •21. Электротонический потенциал (местное возбуждение)
- •22. Потенциал покоя нервной клетки.
- •23. Механизм распространения возбуждения по немиелиновому нервному волокну
- •24. Ионно-мембранная теория потенциала покоя и потенциала действия
- •25. Основные свойства нервной клетки
- •26. Синаптическое торможение Синаптическое торможение - процесс в центральной нервной системе, основанный на взаимодействии медиатора со специфическими молекулами постсинаптической мембраны.
- •27.Пресинаптическое и постсинаптическое торможение
- •28. Возвратное торможение.(?Гиппокамп и образная память)
- •29. Синаптическая пластичность как основа когнитивной функции нервной системы
- •30. Формы синаптической пластичности
- •31. Суммация. Окклюзия. Утомление синаптической передачи
- •32. Потенциация, посттетаническая потенциация (сенситизация).
- •33. Депрессия и привыкание (габитуация).
- •34. Nmda- и ampa–рецепторы – их роль в возникновении и проявлении долговременной потенциации.
- •35. Ионотропные и метаботропные рецепторы
- •36. Механизм активации глутаматных рецепторов. Nmda-рецептор. Амра-рецептор.
- •37. Общие характеристики структуры и функции ионотропных рецепторов
- •38. Метаботропные рецепторы
- •39. Реверберационная гипотеза природы кратковременной памяти. Круг Пейпеца.
- •40. Взаимодействие медиатора с рецепторами постсинаптической мембраны.
- •42. Консолидация памяти.
- •43. Механизм образования кратковременной и долговременной памяти
- •44. Участие ионов кальция в долговременной потенциации.
- •45. Механизмы памяти (? Теория памяти э.Кендела, Роль гиппокампа в механизмах памяти?)
- •48. Функции сенсорных систем
- •49. Общие принципы конструкции и организации сенсорных систем
- •50. Общий план строения сенсорной системы
- •51. Принципы организации сенсорных путей
- •52. Принцип двойственности проекций сенсорной системы
- •53. Принцип соматотопической организации.
- •54. Сенсорная адаптация
- •55. Рецепторы в сенсорной системе
- •56. Рецепторный потенциал
- •57. Абсолютный и дифференциальный (разностный) пороги.
- •58. Адаптация рецепторов в сенсорной системе
- •60. Принцип нисходящего контроля сенсорной системы.
- •61. Первичные, вторичные, третичные проекции сенсорных систем
- •62. Нейромедиаторы и нейромодуляторы
- •63.Роль дофаминовой системы в деятельности мозга
- •64. Техника регистрации электроэнцефалограммы.
- •65. Основные ритмы электроэнцефалограммы человека. Артефакты, возникающие во время регистрации электроэнцефалограммы.
- •74.Позитронно-эмиссионная томография. Физические основы метода. Применение в
- •1. Свойства возбудимых тканей: раздражимость, возбудимость, проводимость, лабильность.
- •2. Виды раздражителей: адекватные и неадекватные, пороговые, подпороговые, сверхпороговые.
9. Механизмы и законы проведения возбуждения по нервному волокну.
Механизм проведения по безмиелиновому волокну:
А. реверсия (смена) электрического заряда
Б. возникновение электрического тока
В. возбуждение близлежащих участков
Г. продвижение возбуждения и восстановление ранее возбужденных участков
Механизм проведения по миелиновому волокну:
А. реверсия (смена) электрического заряда
Б. возникновение электрического тока и и возбуждение соседних участков
В. скачкообразное перемещение возбуждения по перехватам Ранвье
Законы проведения возбуждения:
анатомической и физиологической непрерывности — электрический ток распространяется только по целым волокнам;
двустороннего проведения эл. тока — возбуждение распространяется в 2 стороны;
изолированного проведения — возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.
10. Строение химического синапса. Понятие о нейромедиаторах, их виды. Механизм проведения возбуждения и торможения через синапс.
Нейромедиаторы — биологически активные вещества, посредством которых осуществляется передача электрического импульса.
Виды нейромедиаторов:
аминокислоты (ГАМК, глицин, глутамат);
пептиды (энкефалины, эндорфины);
моноамины (адреналин, норадреналин, дофамин, серотонин).
Механизм проведения возбуждения и торможения.
А — синтез медиатора;
Б — секреция медиатора, открытие потенциалчувствительных Ca2+-каналов;
В — взаимодействие медиатора с рецепторами постсинаптической мембраны;
Г — инактивация медиатора;
Д — генерация ПД.
В тормозном химическом синапсе молекулы медиатора, взаимодействуя с рецепторами постсинаптической мембраны, вызывают открытие К+ - и Cl– -хемочувствительных каналов. Вход в клетку Cl– и дополнительная утечка из клетки К+ приводят к гиперполяризации постсинаптической мембраны
11. Структурно-функциональная характеристика клетки как основной единицы нервной ткани. Морфофункциональная характеристика глиальных клеток.
Структурно-функциональной единицей нервной системы является нервная клетка, или нейрон, или нейроцит.
Части нейрона:
Тело нейрона — скопление клеточной плазмы, в которой располагается ядро – носитель генетической информации, митохондрии – универсальные «генераторы» энергии, необходимой для обеспечения деятельности клетки, и большое количество структур, выполняющих различные специфические функции.
Поверхность нейрона, его оболочка, часто именуемая просто мембраной, не только обеспечивает обмен с окружающей средой, но, обладая свойствами полупроницаемой мембраны, является структурой, где развиваются сложные процессы биоэлектрогенеза, лежащие в основе главных функций нервной клетки.
Отростки нервных клеток являются выростами цитоплазмы. Различают два вида отростков. Дендриты – короткие, древовидно ветвящиеся, постепенно истончаются и заканчиваются в окружающих тканях. Количество их достигает десяти, они многократно увеличивают поверхность клетки. Помимо дендритов нервная клетка всегда имеет один аксон (или нейрит). Этот отросток всегда более крупный, длинный (до 1 м) и менее ветвистый. Аксон заканчивается синапсом, при помощи которого он функционально взаимодействует с иннервируемыми структурами.
Свойства:
мембранный потенциал;
высокая чувствительность к медиаторам и электрическому току;
способны к нейросекреции;
высокий уровень энергетических процессов.
Функции:
Воспринимающая
Интегративная – обработка одновременно или в течение короткого интервала времени поступающих нервных сигналов по механизму их алгебраической суммации, в результате которой на выходе нейрона формируется сигнал, несущий в себе информацию всех суммированных сигналов.
Мнестическая, основанная на существовании тонких молекулярных биофизических процессов, сохраняющих след от всякого предыдущего воздействия и благодаря этому трансформирующих характер ответной реакции на всякое последующее. По существу, это элементарная форма памяти и научения.
Проводниковая
Передающая
Нейроглия — совокупность вспомогательных клеток нервной ткани.
Астроциты регулируют микросреду вокруг нейронов ЦНС.
Олигодендроциты участвуют в миелинизации аксонов.
Микроглия — фагоцитирующие клетки, т.е. защищают нервные клетки.
!Глия умеет делиться всю жизнь.
