- •1. Строение аксона и дендрита.
- •2. Дистантные взамодействия между нейронами.
- •3. Нейромедиаторы, классификация, функции.
- •4. Строение клеточной мембраны. Транспорт ионов через мембрану. Виды транспорта ионов.
- •5. Законы раздражения. Зависимость между силой и длительностью раздражения.
- •6. Мембранный потенциал. Механизм его возникновения.
- •7. Потенциал действия. Механизм возникновения, фазы потенциала действия.
- •8. Нейрон. Строение, функции, классификация нейронов. Нейроглия. Сроки миелинизации нервных волокон.
- •9. Механизмы и законы проведения возбуждения по нервному волокну.
- •10. Строение химического синапса. Понятие о нейромедиаторах, их виды. Механизм проведения возбуждения и торможения через синапс.
- •11. Структурно-функциональная характеристика клетки как основной единицы нервной ткани. Морфофункциональная характеристика глиальных клеток.
- •12. Торможение в цнс. Его значение и механизмы.
- •13. Нейрон. Нейронные сети, соединения клеток.
- •14. Группы нервных волокон и форма пд. Следовые потенциалы.
- •15. Ионные каналы и ионные насосы.
- •16. Свойства перехватов Ранвье.
- •17. Виды нервной памяти, система памяти.
- •18. Строение и функциональная роль электрического синапса.
- •21. Электротонический потенциал (местное возбуждение)
- •22. Потенциал покоя нервной клетки.
- •23. Механизм распространения возбуждения по немиелиновому нервному волокну
- •24. Ионно-мембранная теория потенциала покоя и потенциала действия
- •25. Основные свойства нервной клетки
- •26. Синаптическое торможение Синаптическое торможение - процесс в центральной нервной системе, основанный на взаимодействии медиатора со специфическими молекулами постсинаптической мембраны.
- •27.Пресинаптическое и постсинаптическое торможение
- •28. Возвратное торможение.(?Гиппокамп и образная память)
- •29. Синаптическая пластичность как основа когнитивной функции нервной системы
- •30. Формы синаптической пластичности
- •31. Суммация. Окклюзия. Утомление синаптической передачи
- •32. Потенциация, посттетаническая потенциация (сенситизация).
- •33. Депрессия и привыкание (габитуация).
- •34. Nmda- и ampa–рецепторы – их роль в возникновении и проявлении долговременной потенциации.
- •35. Ионотропные и метаботропные рецепторы
- •36. Механизм активации глутаматных рецепторов. Nmda-рецептор. Амра-рецептор.
- •37. Общие характеристики структуры и функции ионотропных рецепторов
- •38. Метаботропные рецепторы
- •39. Реверберационная гипотеза природы кратковременной памяти. Круг Пейпеца.
- •40. Взаимодействие медиатора с рецепторами постсинаптической мембраны.
- •42. Консолидация памяти.
- •43. Механизм образования кратковременной и долговременной памяти
- •44. Участие ионов кальция в долговременной потенциации.
- •45. Механизмы памяти (? Теория памяти э.Кендела, Роль гиппокампа в механизмах памяти?)
- •48. Функции сенсорных систем
- •49. Общие принципы конструкции и организации сенсорных систем
- •50. Общий план строения сенсорной системы
- •51. Принципы организации сенсорных путей
- •52. Принцип двойственности проекций сенсорной системы
- •53. Принцип соматотопической организации.
- •54. Сенсорная адаптация
- •55. Рецепторы в сенсорной системе
- •56. Рецепторный потенциал
- •57. Абсолютный и дифференциальный (разностный) пороги.
- •58. Адаптация рецепторов в сенсорной системе
- •60. Принцип нисходящего контроля сенсорной системы.
- •61. Первичные, вторичные, третичные проекции сенсорных систем
- •62. Нейромедиаторы и нейромодуляторы
- •63.Роль дофаминовой системы в деятельности мозга
- •64. Техника регистрации электроэнцефалограммы.
- •65. Основные ритмы электроэнцефалограммы человека. Артефакты, возникающие во время регистрации электроэнцефалограммы.
- •74.Позитронно-эмиссионная томография. Физические основы метода. Применение в
- •1. Свойства возбудимых тканей: раздражимость, возбудимость, проводимость, лабильность.
- •2. Виды раздражителей: адекватные и неадекватные, пороговые, подпороговые, сверхпороговые.
53. Принцип соматотопической организации.
Характеризует только специфические сенсорные пути. Согласно этому принципу, возбуждение от соседних рецепторов поступает в рядом расположенные участки подкорковых ядер и коры. Т.е. воспринимающая поверхность какого-либо чувствительного органа (сетчатка глаза, кожа) как бы проецируется на кору больших полушарий.
54. Сенсорная адаптация
Сенсорная система обладает способностью приспосабливать свои свойства к условиям среды и потребностям организма. Сенсорная адаптация — общее свойство сенсорных систем, заключающееся в приспособлении к длительно действующему (фоновому) раздражителю. Адаптация проявляется в снижении абсолютной и повышении дифференциальной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя (например, мы не замечаем непрерывного давления на кожу привычной одежды).
Адаптационные процессы начинаются на уровне рецепторов, охватывая и все нейронные уровни сенсорной системы. Адаптация слаба только в вестибуло- и проприорецепторах. По скорости данного процесса все рецепторы делятся на быстро- и медленно адаптирующиеся. Первые после развития адаптации практически не посылают в мозг информации о длящемся раздражении. Вторые эту информацию передают в значительно ослабленном виде. Когда действие постоянного раздражителя прекращается, абсолютная чувствительность сенсорной системы восстанавливается. Так, в темноте абсолютная чувствительность зрения резко повышается.
В сенсорной адаптации важную роль играет эфферентная регуляция свойств сенсорной системы. Она осуществляется за счет нисходящих влияний более высоких на более низкие ее отделы. Происходит как бы перенастройка свойств нейронов на оптимальное восприятие внешних сигналов в изменившихся условиях. Состояние разных уровней сенсорной системы контролируется также ретикулярной формацией, включающей их в единую систему, интегрированную с другими отделами мозга и организма в целом. Эфферентные влияния в сенсорных системах чаще всего имеют тормозной характер, т. е. приводят к уменьшению их чувствительности и ограничивают поток афферентных сигналов.
55. Рецепторы в сенсорной системе
Рецепторы принято делить на три больших класса:
экстерорецепторы;
интерорецепторы;
проприорецепторы.
Среди экстерорецепторов выделяют дистантные (зрительные, слуховые и пр.) и контактные (температурные, тактильные и др.). Интерорецепторы сигнализируют о состоянии внутренних органов и изменениях химического состава тканевой жидкости, содержимого пищеварительного тракта и пр. Благодаря функционированию проприорецепторов ЦНС получает информацию о состоянии опорно-двигательного аппарата
Рецепторы первично-чувствующие (или первичные) и вторично-чувствующие (или вторичные).
По строению рецепторы подразделяют на первичные и вторичные.
• К первичным относят такие сенсорные рецепторы, у которых действие раздражителя воспринимается непосредственно периферическими отростками чувствительного нейрона (нервными окончаниями), которые могут быть:
• свободными, т. е. не имеют дополнительных образований;
• инкапсулированными, т.е. окончания чувствительного нейрона заключены в особые образования, осуществляющие первичное преобразование энергии раздражителя.
• К вторичным относят такие сенсорные рецепторы, у которых действие раздражителя воспринимается специализированной рецептирующей клеткой не нервного происхождения. Возбуждение, возникшее в рецептирующей клетке, передается через синапс на чувствительный нейрон.
