- •Раздел 1. Общие проблемы принятия решений
- •Глава 1. Общие вопросы принятия решений
- •1. Сущность принятия решений, его проблемы
- •2. Теории принятия решений
- •3. Субъективный фактор в процессе принятия решений
- •Глава 2. Использование принятия решений в процессе управления производством
- •1. Направления нтп
- •2. Производственные системы как объект управления
- •3. Администрирование и менеджмент
- •4. "Принятие решений" в производственном менеджменте
- •5. Понятие – управленческого решения на производстве
- •Глава 3. Системный анализ как основа принятия решения
- •1. Общие понятия
- •2. Моделирование в процессе системного анализа
- •2.1. Моделирование в процессе системного анализа
- •2.2. Модели адаптивного поведения
- •2.3. Моделирование окружающей среды
- •3. Оценка стоимости системы
- •Глава 4. Ситуационный анализ
- •1. Ситуационный подход
- •2. Мозговая атака
- •3. Двухтуровое анкетирование
- •4. Факторный анализ
- •5. Многомерное шкалирование
- •6. Этапы ситуационного анализа
- •6.1. Основные этапы ситуационного анализа
- •6.2. Этап 1. Подготовка к ситуационному анализу
- •6.3. Этап 2. Анализ информации
- •6.4. Этап 3. Анализ ситуации
- •6.5. Этап 4. Разработка сценариев возможного развития ситуации
- •6.6. Этап 5. Оценка ситуации
- •6.7. Этап 6. Обработка данных и оценка результатов экспертизы
- •6.8. Этап 7. Подготовка аналитических материалов
- •7. Метод сценариев
- •Раздел 2. Разработка управленческого решения
- •Глава 1. Разработка управленческого решения
- •1. Стратегическое и тактическое планирование
- •2. Реализация решений в организации
- •Глава 2. Управленческие решения и организация
- •1. Организационные структуры
- •2. Департаментализация
- •3. Адаптивные структуры
- •4. Новые направления развития организации
- •5. Многомерная организация
- •6. Сетевая организация
- •Глава 3. Управление кадрами
- •1. Понятие управления кадрами
- •1.1. Понятие управления персоналом
- •1.2. Структура управления персоналом
- •2. Задачи кадровых служб
- •3. Прием на работу
- •4. Аттестация сотрудников предприятия
- •5. Основы управления персоналом
- •6. Делегирование полномочий
- •7. Иерархия в управлении
- •8. Единство подчинения
- •9. Централизация и децентрализация
- •Глава 4. Управление качеством
- •1. Понятие качества
- •1.1. Понятие качества
- •1.2. Нецелесообразность производства товара плохого качества
- •2. Контроль качества
- •3. Поведенческие аспекты контроля качества
- •Глава 5. Прогнозирование и принятие решений
- •2. Классификация основных методов прогнозирования
- •3. Основные этапы экспертного прогнозирования
- •4. Нормативное прогнозирование
- •Глава 6. Принятие решения в сложной ситуации
- •1. Процесс разработки управленческих решений в сложных ситуациях
- •2. Анализ проблемной ситуации и ее описание
- •3. Критерии принятия управленческих решений и их шкалы
- •5. Содержание процесса контроля
- •Глава 7. Принятие решений в условиях неопределенности
- •1. Задачи обоснования управленческих решений в условиях неопределенности
- •2. Составляющие и источники рисков в управлении
- •3. Технология ведения переговоров
- •3. Цели деловой беседы
- •4. Этап тактической подготовки к деловой беседе
- •5. Схема проведения деловой беседы
- •6. Технология ведения деловой беседы
- •7. Методы и технологии принятия управленческих решений в условиях «природной» неочевидности
- •Глава 8. Принятие решений в маркетинге
- •1. Анализ рыночных возможностей
- •1.1. Маркетинг в управлении производством
- •1.2. Направления изучения рыночных возможностей
- •1.3. Методы исследования рынка
- •2. Отбор рынков
- •2.1. Отбор целевых рынков. Сегментирование рынка
- •2.2. Стратегия ценообразования
- •2.3. Методы продвижения товаров на рынок
- •3. Разработка маркетинговой политики
- •3.1. Общий план маркетингового исследования
- •3.2. Маркетинг товаров инвестиционного назначения и комплексных объектов
- •3.3. Планирование комплекса маркетинговых мероприятий
- •4. Осуществление маркетинговых мероприятий
- •4.1. Организация маркетинговой службы. Методы маркетингового контроля
- •4.2. Принятие решений в ходе проведения маркетинговых мероприятий
- •4.3. Проверка комплекса маркетинговых мероприятий
- •5. Принципы экономического обоснования
2. Классификация основных методов прогнозирования
Технологическое прогнозирование подразделяется на изыскательское (иногда его называют еще поисковым) и нормативное.
В основе изыскательского прогнозирования лежит ориентация на представляющиеся возможности, установление тенденций развития ситуаций на основании имеющейся при разработке прогноза информации.
Изыскательскому прогнозированию соответствует перемещение в пространстве технологий от технологий более низкого уровня к технологиям более высокого уровня. Иными словами, от средств и возможностей к потребностям и целям.
Примером изыскательского прогнозирования может служить прогнозирование в области электроники, когда прогнозируемый процесс представляется в виде последовательного перемещения технологий, начиная от квантовой электродинамики и кончая мгновенно осуществляемой всемирной связью.
В основе нормативного прогнозирования лежит ориентация на миссию организации, на те потребности и цели, к достижению которых она стремится. Нормативному прогнозированию соответствует перемещение в пространстве технологий от технологий более высоких уровней к технологиям более низких уровней. Иными словами, от потребностей и целей" к средствам их реализации.
Примером нормативного прогнозирования может служить прогнозирование в области космоса, когда прогнозируемый процесс представляется в виде последовательного перемещения технологий от понимания проблемы космоса как среды, которая должна служить на благо человеку, до конкретных средств ее решения — условий для ядерного деления и количества высвобождающейся при этом энергии, термодинамического преимущества газов с низким молекулярным весом и т. д.
В рамках технологического прогнозирования решаются такие задачи, как разработка прогнозов в области экономической и коммерческой активности, социальной и политической деятельности.
Одной из центральных проблем при разработке прогнозов является эффективное сочетание методов изыскательского и нормативного прогнозирования.
Для изыскательского прогнозирования характерно использование таких методов, как экстраполяция, моделирование, метод исторической аналогии, написание сценариев и т. д., базирующихся на анализе точных эмпирических данных.
При использовании методов изыскательского прогнозирования предпочтение отдается количественной информации, хотя использование качественной (неколичественной) информации в изыскательском прогнозировании также возможно.
Примером тому является использование интуитивных методов, того же метода сценариев или метода экспертных кривых, позволяющих определять наметившиеся тенденции изменения ситуации, базируясь не только на эмпирических данных, но и на опыте высококвалифицированных специалистов-экспертов.
К числу основных методов, используемых при нормативном прогнозировании, следует отнести прежде всего методы ПАТТЕРН, Делфи, прогнозного графа Глушкова, Поспелова и др.
Такой широко используемый в настоящее время инструментарий, как деревья целей, впервые появился как составная часть метода ПАТТЕРН (обоснование планирования посредством научно-технической оценки количественных данных), разработанного в 1963 г. для нужд аэронавтики и космоса.
Среди других видов прогнозирования иногда выделяют прогнозирование с использованием обратной связи, интуитивные методы, "обходные" и др.
Но основные идеи, используемые при разработке прогнозов, достаточно полно представлены именно в изыскательском и нормативном прогнозировании.
Основные методы как изыскательского, так и нормативного прогнозирования будут рассмотрены далее.
Мы же сейчас обсудим тот принципиальный "водораздел", существующий в разных видах прогнозирования, в основе которого характер анализируемой информации.
Очень важно как для процесса сбора, так и для процессов анализа и обработки данных, является ли информация количественной или качественной (неколичественной).
Количественная информация, если она достаточно надежна, обладает тем преимуществом, что позволяет использовать точные математические методы и модели и определять тенденции развития ситуации с определенной точностью, с указанием доверительных интервалов, возможных погрешностей при расчетах и т. д.
Однако, к сожалению, количественная информация не всегда оказывается надежной.
Но пожалуй, даже более существенным является то обстоятельство, что круг проблем, для которых удается разработать адекватные математические модели, оказывается значительно уже того множества ситуаций, в которых необходимо принимать реальные решения.
Тем не менее там, где удается получить адекватное описание ситуации на строгом математическом языке, результаты анализа и необходимые расчеты, это необходимо делать.
В гораздо большем числе случаев при разработке прогнозов приходится иметь дело с качественной информацией.
При разработке прогноза к их числу относятся ситуации, когда данные представлены в виде вербальных (словесных) описаний, когда оценки получены с помощью вербальных или вербальночисловых шкал, когда имеется информация лишь о сравнительных оценках альтернативных вариантов и т. д.
Да и ситуации, когда полученная количественная информация не может быть "вписана " ни в одну из имеющихся математических моделей, также могут быть проанализированы с помощью специально разрабатываемых методов качественного анализа.
В последние годы получило развитие экспертное прогнозирование, ориентированное в значительной степени на работу не только с количественной, но и с качественной информацией, получаемой непосредственно от экспертов.
Как считает выдающийся российский ученый Н. Н. Моисеев, развитие экспертного прогнозирования совпало по времени с активным развитием ЭВМ. Последний факт найдет несомненное отражение в практике экспертного прогнозирования.
