Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.69 Mб
Скачать

35. Линейные уравнения 2-го порядка и их свойства. Постановка задачи Коши

36. Однородные линейные уравнения и свойства их решений

37. Понятие линейной зависимости и линейной независимости функций на отрезке. Доказать теорему о построении общего решения однородного линейного уравнения на основе фундаментальной системы решений.

Система функций y1(x), y2(x), …, yn(x) называется линейно зависимой на интервале (a, b), если существует набор постоянных коэффициентов , не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a, b): для . Если равенство для возможно только при , система функций y1(x), y2(x), …, yn(x) называется линейно независимой на интервале (a, b). Другими словами, функции y1(x), y2(x), …, yn(x) линейно зависимы на интервале (a, b), если существует равная нулю на (a, b) их нетривиальная линейная комбинация. Функции y1(x), y2(x), …, yn(x) линейно независимы на интервале (a, b), если только тривиальная их линейная комбинация тождественно равна нулю на (a, b). Примеры: 1. Функции 1, x, x2, x3 линейно независимы на любом интервале (a, b). Их линейная комбинация - многочлен степени - не может иметь на (a, b) больше трёх корней, поэтому равенство = 0 для возможно только при . Пример 1 легко обобщается на систему функций 1, x, x2, x3 , …, xn. Их линейная комбинация - многочлен степени - не может иметь на (a, b) больше n корней. 3. Функции линейно независимы на любом интервале (a, b), если . Действительно, если, например, , то равенство имеет место в единственной точке . 4. Система функций также линейно независима, если числа ki (i = 1, 2, …, n) попарно различны, однако прямое доказательство этого факта достаточно громоздко. Как показывают приведённые примеры, в некоторых случаях линейная зависимость или независимость функций доказывается просто, в других случаях это доказательство сложнее. Поэтому необходим простой универсальный инструмент, дающий ответ на вопрос о линейной зависимости функций. Такой инструмент - определитель Вронского.

Фундаментальная система решений однородной системы уравнений

Фундаментальная система решений – это множество линейно независимых векторов , каждый из которых является решением однородной системы, кроме того, решением также является линейная комбинация данных векторов , где  – произвольные действительные числа.

Количество векторов  фундаментальной системы рассчитывается по формуле:

Однако в практических заданиях гораздо удобнее ориентироваться на следующий признак: количество векторов  фундаментальной системы равно количеству свободных неизвестных.

Представим общее решение  Примера №3  в векторной форме. Свободная переменная в данном случае одна, поэтому фундаментальная система решений состоит из единственного вектора . Как его найти? Для этого свободной переменной нужно придать произвольное ненулевое значение. Проще всего, конечно же, выбрать   и получить: .

Координаты вектора  должны удовлетворять каждому уравнению системы, и будет не лишним в этом убедиться.

Ответ следует записать в виде линейной комбинации векторов фундаментальной системы. В нашей ситуации линейная комбинация состоит из одинокого слагаемого. Общее решение однородной системы я буду обозначать через вектор  (подстрочный индекс расшифровывается «Общее Однородной»).

Ответ: общее решение: , где  (любое вещественное число)

Придавая параметру  различные действительные значения, можно получить бесконечно много частных решений, например, если , то вектор частного решения однородного уравнения («Частное Однородной») равен: , то есть набор переменных  удовлетворяет каждому уравнению системы.

Это мы рассмотрели традиционный способ построения фундаментальной системы в так называемом нормальном виде – когда свободным переменным придаются исключительно единичные значения. Но правила хорошего математического тона предписывают избавляться от дробей, если это возможно. Поэтому в данном случае можно взять  и из общего решения системы  получить вектор с целыми координатами:

И тогда ответ запишется в эквивалентной форме: , где  (любое вещественное число)

Оба варианта ответа правильны, однако чайникам я всё-таки рекомендую классику жанра.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]