Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИЛЕТЫ ГОСЫ Ответы.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
1.67 Mб
Скачать

4. Роль налогов в формировании доходов бюджетов различных уровней.

Налоги олицетворяют собой ту часть совокупности финансовых отношений, которая связана с формированием денежных доходов государства (бюджета и внебюджетных фондов), необходимых для выполнения соответственных дирекций – социальной, экономической, военно-оборонительной, правоохранительной, по развитию фундаментальной науки и др. Налоги являются объективной необходимостью, они обусловлены потребностями, которые формируют ее структуру и механизм функционирования финансовой системы страны. Факторы социального и экономического порядка стимулируют обновление производственных отношений в части налогов: так переход к рыночной системе хозяйствования потребовал от государства проведения коренной перестройки налоговой системы и бюджетной политики.

Формирование рынка труда, его функционирование не могут быть эффективными без создания государственного фонда содействия занятости. Такой фонд образуется за счет обязательных отчислений хозяйствующих субъектов (работодателей). Также создаются фонды медицинского страхования, социального страхования и пенсионный фонд. Все эти внебюджетные фонды появились в России в течение 1991–92 гг. в законодательном порядке, чтобы постепенно обеспечить приемлемый и достаточный уровень социальных мер.

Отношение предприятий и государства по поводу формирования внебюджетных фондов, имеющих налоговую природу: ж/д тарифы, нормы страховых отчислений в фонды законодательства – устанавливаются государством, относятся на себестоимость выпускаемой продукции, работ, услуг, следовательно, имеют непосредственную связь с налогом на прибыль. Поэтому в Законе РФ “Об основах налоговой системы РФ” все эти платежи фигурируют в качестве федеральных налогов.

Билет 19.

1. Производственная функция. Правила замещения факторов производства.

В процессе производства взаимодействуют различные факторы производства, дополняя и заменяя друг друга. Каким должно быть рациональное сочетание ресурсов, чтобы в итоге оно привело к росту готового продукта при минимуме издержек?

Ответ на этот вопрос дает производственная функция, описывающая экономическую деятельность фирмы и показывающая массу альтернативных вариантов сочетания вводимых в производство факторов, дающих максимум выпуска.

Производственная функция, определяющая взаимодействие факторов производства.

Производственная функция показывает функциональную связь между входными ресурсами, производственным процессом и итоговым выходом, практически решая задачу оптимизации «затраты-выпуск».

Если весь набор факторов укрупнено представить как затраты труда L и капитал К, производственная функция может быть выражена следующими образом:

Q = f(L, K)

Где Q — максимальный объем продукции, производимый при данном соотношении L и K и данной технологии.

Уравнение производственной функции данного типа показывает:

  • объем выпуска зависит от количества двух групп факторов

  • возможны комбинации К и L, среди которых имеется и оптимальный вариант их сочетания: (K, L) →max

  • факторы можно замещать, найдя пределы замещения через соотношение отдачи цены каждого из них, получая при этом Q — const, то есть практически производственная функции дает возможность выбора рациональной технологии: трудоемкой или капиталоемкой.

График выражения функции типа Q = f(L, K) базируется на табличном ее выражении:

L

K

1

2

3

4

5

1

30

60

85

105

120

2

60

90

120

135

150

3

85

115

140

160

175

4

105

135

160

180

195

5

120

150

175

195

210

В данной таблице приведены данные максимального выпуска продукции при различных сочетаниях факторов производства: трудовых и капитальных затрат. Например, 85 единиц можно получить, используя две комбинации К и L (3K+1L, 1K+3L). Объем Q=120 единиц получаем, сочетая: 1K+5L, 2K+3L, 5K+1L.

Изокванта — линия равных объемов выпуска при различных сочетаниях факторов производства.

Изокванта — графическое выражение функции типа Q = f(L, K), каждая точка которой показывает одинаковый объем и множество соотношений К и L.

Изокванта на базе данных комбинаций с Q = 120.

Y

5 С (5К+1L)

2 В (2К+3L)

А (1К+5L)

1 Q = 120

X