- •Глава 1. Основные сведения о восп.
- •1.1. Основные положения.
- •1. 2. Оптическое волокно.
- •1.2.1. Типы оптических волокон.
- •1.2.2. Распространение света по волокну.
- •1.2.3. Характеристики поставляемых волокон.
- •1.3. Пассивные оптические компоненты.
- •1.3.1. Разъемные соединители.
- •1.4. Оптоэлектронные компоненты восп.
- •1.4.1. Передающие оптоэлектронные модули.
- •Светоизлучающие диоды
- •1.4.2. Приемные оптоэлектронные модули
- •Технические характеристики фотоприемников
- •1.5. Волоконно-оптические усилители и волновое мультиплексирование
- •1.5.1. Оптические усилители
- •1.5.2. Применение оптических усилителей edfa
- •1.5.3. Плотное волновое мультиплексирование
- •Глава 2. Системы передачи синхронной цифровой иерархии (sdh) первого поколения.
- •2.1. Общие особенности построения sdh и ее основные характеристики.
- •2.2. Основы функционирования sdh.
- •2.2.1. «Аллегория поезда».
- •2.2.2. Процедура контейнирования нагрузки.
- •140 Мбит/с 2 Мбит/с 140 Мбит/с
- •140 Мбит/с 2 Мбит/с 2 Мбит/с
- •140 Мбит/с
- •2 Мбит/с
- •2.2.3. Понятие виртуального контейнера.
- •270 Байт
- •9 Msoh строк
- •2.2.4. Понятие маршрута.
- •2.2.5. Мультиплексирование нагрузки и варианты загрузки vc.
- •2.2.6. Заголовки и поля.
- •9 Байтов
- •9 Строк
- •2.2.7. Идентификаторы j-X.
- •2.2.8. Указатели – поля Hx.
- •2.2.9. Топология сети и резервирование – байты к.
- •16 Защищенных соединений vc-4,
- •16 Защищенных соединений vc-4
- •16 Защищенных соединений vc-4
- •А б) после отказа
- •2.2.10. Контроль четности – байты в.
- •2.2.11. Другие важные поля – c, g, V.
- •2.2.12. Управление в системе sdh.
- •2.2.13. Протоколы взаимного соединения тсм – байты n.
- •Iec tc rei oei multiframe
- •2.2.14. Архитектура мультиплексоров sdh
- •2.2.15. Обобщенный взгляд на технологию sdh.
- •Глава 3. Синхронизация в сетях sdh. Джиттер и вандер.
- •3.1. Общие сведения о синхронизации.
- •3.1.1. Аллегория «Бассейн».
- •3.1.2. Понятие проскальзываний.
- •3.1.3. Общие принципы систем синхронизации.
- •3.1.4. Построение системы синхронизации.
- •3.1.5. Структура графов и топология систем синхронизации.
- •3.2. Джиттер и вандер в сетях sdh.
- •3.2.1. Понятие джиттера и вандера.
- •3.2.2. Измерение джиттера и вандера.
- •3.2.3. Джиттер и вандер в сетях sdh. Работа указателей.
- •3.3. Системы синхронизации в sdh. Использование ssm.
- •3.3.1. Интеграция системы управления и системы синхронизации.
- •3.3.2. Состав сигналов ssm.
- •3.3.3. Механизм использования ssm сообщений системой управления при резервировании.
- •3.3.4. Использование tsg/ssu в системе управления синхронизацией.
- •4 3 Выделенный
- •9 7 Сигнал
- •Глава 4. Принципы измерения параметров ошибок и мониторинг взаимного соединения.
- •4.1. Измерительные технологии и особенность эксплуатационных измерений.
- •4.1.1. Принципы измерения параметров ошибок.
- •4.1.2. Методики нормирования и контроля качества g.821/g.826/m2100.
- •4.2. Система sdh как объект измерений.
- •4.2.1. Многоуровневый принцип процесса измерений.
- •4.2.2. Принципы мониторинга полей заголовков.
- •4.3. Принципы контроля качества при необходимых измерениях.
- •4.3.1. Нормы Приказа №92.
- •4.3.2. Переход к соглашению о качестве обслуживания sla.
- •4.3.3. Сетевые средства контроля качества и роль измерений QoS в современных системах эксплуатации и oss.
- •I nventory
- •4.4. Эксплуатационные измерения в системах sdh.
- •4.4.1. Процесс маршрутизации потоков.
- •4.4.2. Процесс возникновения ошибок и неисправностей.
- •4.4.3. Процесс нарушения в работе системы синхронизации.
- •5. Предпосылки к появлению новой технологии - ng-sdh.
- •5.1. Новые требования к системам передачи sdh.
- •5.1.1. Рост уровня пакетного трафика.
- •5.1.2. Появление разнородных типов трафика и принцип конвергенции.
- •5.1.3. Sdh как технология транспорта.
- •5.1.4. Преимущества и недостатки использования ngsdh на транспортной сети.
- •5.1.5. Влияние концепций оптических технологий ftTx на ngsdh.
- •5.1.6. Концепция wdm/dwdm.
- •5.2. Основные направления развития систем ngsdh.
- •5.2.1. Направления развития ngsdh.
- •5.2.2. Проблемы передачи высокоскоростного трафика.
- •5.2.3. Первая попытка решения – конкатенация.
- •5.2.4. Виртуальная конкатенация – vcat.
- •5.2.5. Проблемы передачи пакетного трафика.
- •Ietf rfc 1661 ietf rfc 1662 ietf rfc 2615
- •5.2.6. Управление шириной коридора. Lcas.
- •750 Мбит/с 750 Мбит/с
- •5.2.7. Современная модель ngsdh.
- •5.3. Структура протокола gfp.
- •5.3.1. Общие основы gfp.
- •5.3.2. Подсистема gfp-c.
- •5.3.3. Подсистема gfp-f.
- •5.3.4. Подсистема gfp-t.
- •5.4. Механизм работы систем vcat.
- •5.4.1. Модель механизма vcat.
- •5.4.2. Vcat уровня vc-3/4.
- •5.4.3. Vcat уровня vc-2/12.
- •5.5. Структура протокола lcas.
- •5.5.1. Изменение структуры vcat при введении lcas.
- •5.5.2. Принципы сигнализации lcas.
- •5.5.3. Обмен сигналами lcas.
- •5.5.4. Преимущества lcas.
- •5.6. Некоторые дополнения к ngsdh.
- •5.6.1. Процедура коммутации каналов tsi.
- •5.6.2. Концепция автоматической коммутации транспортной сети astn.
- •5.6.3. Автоидентификация в сетях ngsdh.
- •5.7. Концепция упругого пакетного кольца rpr.
- •5.7.1. Основы концепции упругого кольца rpr.
- •5.7.2. Преимущества rpr.
- •5.8. Системы sdh второго поколения. Mspp и mssp.
- •6. Принципы контроля сетей ng sdh.
- •6.1. Особенности ngsdh с точки зрения практики контроля.
- •6.2. Многоуровневое решение по контролю ngsdh.
- •6.2.1. От каналов к виртуальным коридорам.
- •6.2.2. Мультисервисный трафик.
- •6.2.3. Многоуровневая архитектура и многоуровневое решение по контролю ngsdh.
- •6.2.4. Анализ системы ngsdh с точки зрения эксплуатационных процессов.
- •7. Основные сведения о технологии Ethernet и ge.
- •7.1. Общие сведения о технологии Ethernet.
- •7.1.1. Физический уровень технологии Ethernet.
- •7.1.2. Уровень мас.
- •7.1.3. Структура кадров Ethernet. Mac-адресация.
- •Ieee 802.3 frame (1983):
- •Ieee 802.3x (1997):
- •7.1.4. Развитие технологии Ethernet.
- •7.1.5. Полудуплексный и полнодуплексный режим передачи. Берстность. Механизм управления потоками.
- •7.1.6. Виртуальные локальные сети vlan.
- •Virtual lan
- •Vlan Id
- •7.1.7. Функции автоматической конфигурации канального уровня.
- •7.1.8. Варианты топологии сетей Ethernet.
- •7.1.9. Уровень управления логическим соединением (llc).
- •7.2. Gigabit Ethernet, 10ge и дальнейшее развитие технологии Ethernet.
- •1000Base-X 1000base-t
- •2XStp s/m-mode m-mode 4xUtp Cat. 5
- •7.2.1. Архитектура технологии Gigabit Ethernet. Стандарт ieee 802.3.
- •7.2.2. Интерфейс 1000base-X.
- •7.2.3. Немного об интерфейсе 1000base-t.
- •8. Контроль параметров ngsdh.
- •8.1. Принципы контроля параметров ngsdh на уровне Ethernet. Rfc-2544.
- •8.2. Контроль параметров ngsdh на уровне sdh.
- •8.2.1. Цели и задачи измерений на уровне ngsdh.
- •8.2.2. Специфика контроля систем vcat
- •8.2.3. Контроль lcas
- •Gfp vcat lcas
- •8.2.4. Контроль gfp.
- •8.2.5. Контроль параметров Ethernet внутри сети ngsdh.
- •9. Дальнейшее направление развития. Системы sdh третьего поколения.
- •9.1. От концепции mssp к концепции mssp/mstp.
- •9.2.1. Концепция obs.
- •9.2.2. Принципы функционирования obs.
- •9.2.3. Сигнализация в системах obs.
- •9.2.4. Узловые элементы obs.
- •Input Output
- •9.2.5. Потенциальные эксплуатационные проблемы obs.
- •9.3. Ngsdh – магистраль или периферия технического развития?
- •Глава 1. Основные сведения о восп………………………………………………..5
- •Глава 2. Системы передачи синхронной цифровой иерархии (sdh)
- •Глава 3. Синхронизация в сетях sdh. Джиттер и вандер……………………132
- •Глава 4. Принципы измерения параметров ошибок и
- •Глава 5. Предпосылки к появлению новой технологии – ng sdh...............222
- •Глава 6. Принципы контроля сетей ng sdh……………………………………305
- •Глава 7. Основные сведения о технологии Ethernet и ge…………………..315
- •Глава 8. Контроль параметров ng sdh…………………………………………..338
- •Глава 9. Дальнейшее направление развития. Системы sdh
9 Msoh строк
5
Длительность цикла 125 мкс
SOH Section Overhead Секционный заголовок
PTR Pointer Указатель
Рис.2.12. Структура STM-1 и правило чтения его информации
Из рисунка видно, что логическая структура STM-1 представляется в виде матрицы, в которой поля разделены в соответствии с байтовой структурой. Всего STM-1 содержит 270 столбцов по горизонтали и 9 колонок по вертикали. Это означает, что общий объем цикла составляет 2430 байт или 19440 бит. При скорости в 155 Мбит/с такая информация передается чуть более 125 мкс.
Очевидно, что в реальном канале передачи не может передаваться никакая двумерная структура. В действительности поля передаются последовательно в соответствии с правилом чтения информации по стрелке, как показано на рис. 2.12. Так сначала передаются 9 байт заголовка регенерационной секции RSOH,
затем 261 байт нагрузки (это могут быть разные виртуальные контейнеры), затем снова 9 байт заголовка RSOH и т. д.
Но несмотря на чередование байтов заголовка и нагрузки в реальном процессе передачи, представление информации в виде двумерной матричной записи оказывается удобным и наглядным, поскольку заголовок SOH при такой записи расположен изолированно от поля нагрузки. Кроме того, двумерная запись цикла SDH позволяет в полной мере пользоваться понятием поля как выделенного пространства для функционально специализированной информации.
В дальнейшем при рассмотрении полей и заголовков мы будем следовать установившейся традиции удобного матричного представления данных цикла. Например, на рис. 2.10 представлены виртуальные контейнеры верхнего уровня VC-4 в поле нагрузки транспортных модулей STM-1. Причем VC-4 также представлены в виде матрицы, в которой заголовок рассматривается отдельно. И далее при рассмотрении заголовков и различных полей мы часто будем отделять заголовок от поля нагрузки. Необходимо только помнить о том, что в реальной системе передачи поле нагрузки неотделимо от заголовка и чередуется с ним в процессе передачи.
Матричное представление виртуальных контейнеров и транспортных модулей настолько прижилось в практике SDH, что и сами процессы преобразования сигналов в SDH ориентированы на сохранение удобства матричной структуры. В частности в этом смысле интересно рассмотреть процесс мультиплексирования 4 потоков STM-1 и формирование единого транспортного модуля STM-4 (рис. 2.13). Объединение потоков в системах SDH выполняется но основе байт-синхронного алгоритма, так что в потоке STM-N первый байт считывается с первого канала STM-1, второй – со второго STM-1 и т. д., что и показано на рис. 2.13. Из рисунка видно, что мультиплексирование не изменяет архитектуру матричного представления, т. к. в результате «столбцы» заголовков выстраиваются друг за другом, образуя заголовок транспортного модуля STM-N.
Сравнивая рис. 2.10 и 2.12, легко заметить, что логическая структура виртуальных контейнеров и транспортных модулей подобна. Логика построения самой технологии SDH оказывается единой для контейнера, виртуального контейнера и синхронног8о транспортного модуля. Все они представляют собой контейнеры разного названия. Это дает основание ввести для такого обобщенного виртуального контейнера одно понятие, распространяющееся на все структуры SDH.
Введя логическое понятие виртуального контейнера, можно сказать, что виртуальный контейнер представляет собой совокупность трех компонентов: контейнированной нагрузки, заголовка и указателя. Причем, под понятие виртуального контейнера подпадают виртуальные контейнеры нижнего уровня (VC-11, VC-12 и VC-2), виртуальные контейнеры верхнего уровня (VC-3, VC-4) и синхронные транспортные модули всех уровней STM-N. Виртуальный контейнер
в
ерхнего
уровня может состоять из контейнеров
нижнего уровня, но не наоборот.
Соответственно, транспортные модули
STM-N могут в поле нагрузки содержать
контейнеры верхнего и нижнего уровня
или другие варианты наполнения.
STM-1
#
1 AAAA
STM-1 # 2 BBBB
STM-1 # 3 CCCC
STM-1 # 4 DDDD
STM-1 # 5 EEEE
STM-1 # 6 FFFF
STM-1 # 7 GGGG
STM-1
# 8 HHHH ABCDEFGHIJKLMNOP
STM-1 # 9 IIII STM-16
STM-1 # 10 JJJJ
STM-1 # 11 KKKK
STM-1
# 12 LLLL
STM-1
# 1 AAAA STM-1
# 13 MMMM
STM-1 #2 BBBB ABCD STM-1 # 14 NNNN
STM-1 # 3 CCCC STM-4 STM-1 # 15 OOOO
STM-1 # 4 DDDD STM-1 # 16 PPPP
Байт-синхронное мультиплексирование 4 Байт-синхронное мультиплексирование потоков STM-1 в 1 поток STM-4 16 потоков STM-1 в 1 поток STM-16
Рис. 2.13. Синхронное мультиплексирование в иерархии SDH.
