- •1. Полупроводниковые материалы. Электропроводность примесных полупроводников.
- •2. Электронно-дырочный переход, его получение и процессы при прямом и обратном включении.
- •3. Вольт–амперная характеристика электронно-дырочного перехода, его тепловой и электрический пробой.
- •4. Полупроводниковые выпрямительные диоды и их применение.
- •5. Стабилитроны и их применение. Стабилизаторы напряжения.
- •6. Варикапы, светодиоды и фотодиоды и их применение. Оптроны.
- •7) Структура биполярного транзистора и процессы в нём. Характеристики и режимы работы транзистора
- •8 . Схема включения биполярных транзисторов с общим эмиттером и её свойства
- •9.Схема включения биполярных транзисторов с общим коллектором и её свойства
- •10,Структура полевого транзистора с изолированным затвором, процессы в нём и характеристики
- •11,Структура тиристора и процессы в нём, области применения тиристоров.
- •12,Интегральные микросхемы (имс): полупроводниковые и гибридные, аналоговые и цифровые
- •14. Однокаскадный усилитель на биполярном транзисторе по схеме с общим коллектором.
- •15. Многокаскадные усилители, характеристики усилителей.
- •Использование операционного усилителя для построения инвертирующего усилителя.
- •28. Параллельный регистр памяти
- •29. Структурная схема неуправляемого выпрямителя
- •30. Однополупериодный выпрямитель
- •31.Мостовой двухполупериодный выпрямитель
- •33. Мостовой трехвазный выпрямитель
- •Основные соотношения:
- •34.Законы Ома и Кирхгофа для цепей постоянного и переменного тока.
- •Последовательное и параллельное соединения элементов электрических цепей и их свойства в цепях постоянного и переменного тока.
- •37 Представление синусоидальных величин векторами. Векторные диаграммы для цепей переменного тока.
- •38 Активная, реактивная, полная, комплексная мощности в цепи синусоидального тока. Баланс мощностей в цепи синусоидального тока.
- •39 Симметричная трехфазная система величин и её представление формулами, векторной диаграммой, графиком.
- •40 Назначение, устройство и принцип действия однофазного трансформатора
- •42 Трехфазные трансформаторы. Автотрансформаторы. Измерительные трансформаторы тока и напряжения.
- •Вопрос 43.Получение вращающегося магнитного поля.
- •Вопрос 44.Устройство и принцип действия трехфазного асинхронного двигателя.
- •Принцип действия
- •Вопрос 45.Характеристики асинхронного двигателя и его паспортные данные.
- •46.Устройство трехфазной синхронной машины. Принцип действия синхронного генератора. Характеристики и паспортные данные синхронных генераторов.
- •47.Принцип действия трехфазного синхронного двигателя, его пуск и характеристики, применение для регулирования коэффициента мощности.
14. Однокаскадный усилитель на биполярном транзисторе по схеме с общим коллектором.
В усилителях на биполярных транзисторах используется три схемы подключения транзистора: с общей, с общим эмиттером, с общим коллектором.
Усилители в схеме включения транзистора с общим коллектором характеризуются усилением по току, отсутствием усиления по напряжению, большим входным сопротивлением и малым выходным сопротивлением.
Параметры транзистора в значительной степени зависят от температуры. Изменение температуры окружающей среды приводит к изменению рабочего режима транзистора в простой схеме усилителя при включении транзистора с общим эмиттером. Для стабилизации режима работы транзистора при изменении температуры используют схемы коллекторной стабилизации режима работы транзистора.
Коллекторная температурная стабилизация режима работы транзистора по схеме рисунка 5.12 используется редко, так как кроме температурной стабилизации происходит уменьшение коэффициента усиления за счет отрицательной обратной связи по переменному току. Устранить отрицательную обратную связь по переменному току позволяет конденсатор С1 в схеме, приведенной на рисунке 5.13. Такая стабилизация используется, например, в антенных усилителях для телевизионного приема.
15. Многокаскадные усилители, характеристики усилителей.
По разным признакам различают:
1) усилители на электронных усилительных лампах, на транзисторах, на тиристорах, на туннельных диодах, на микросхемах и т. п.;
2) по количеству усилительных каскадов - двух-, трех- и более каскадные усилители;
3) по частотным свойствам - усилители напряжения или тока низкой частоты (НЧ), высокой частоты (ВЧ), промежуточной частоты (ПЧ), ультразвуковой частоты (УЗКЧ), узкополосные и широкополосные усилители, усилители постоянного тока (УПТ);
4) по виду межкаскадной связи - усилители с RС-связью, в которых применяются разделительные конденсаторы между каскадами; усилители с трансформаторной связью между каскадами; усилители с полосовым колебательным контуром связи между каскадами; усилители с непосредственной гальванической связью между каскадами;
5) по виду используемой последовательной или параллельной отрицательной обратной связи по напряжению или току;
6) по режимам работы в классах А, В, АВ, С, Д;
7) по соотношению величины входного сопротивления первого каскада Rвх к-да, сравнительно с величиной сопротивления датчика Rг входного сигнала различают: а) режим холостого хода (хх), когда Rвх к-да >> Rг; б) режим короткого замыкания (кз), когда Rвх к-да << Rг; в) режим согласования, когда Rвх к-да » Rг, при котором от датчика входного сигнала передается на вход усилителя наибольшая входная мощность сигнала;
8) по соотношению величины выходного сопротивления со стороны выходных клемм усилителя сравнительно с величиной сопротивления нагрузки Rн различают следующие режимы работы:
а) режим хх, когда Rвых << Rн;
б) режим кз, когда Rвых >> Rн;
в) режим согласования, когда Rвых » Rн.
характеристики многокаскадных усилителей:
1. Амплитудная характеристика, показывающая зависимость величины выходного напряжения усилителя от величины входного напряжения при постоянной частоте усиливаемого сигнала, то есть Uвых = f(Uвх) при f = = соnst » 400 или 1000 Гц
2. Частотная (или амплитудно-частотная) характеристика, показывающая зависимость величины коэффициента усиления усилителя от частоты входного сигнала при неизменной величине входного напряжения, то есть К = Uвых / Uвх = j(f) при Uвх = соnst.
3. Фазовая характеристика, показывающая величину угла сдвига фазы j между фазой выходного сигнала и фазой входного сигнала в зависимости от частоты сигнала, то есть j = y(f).
16 Усилители постоянного тока (УПТ) предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой.
Усилителями постоянного тока называют такие устройства, которые могут усиливать медленно изменяющиеся электрические сигналы, то есть они способны усиливать и переменные и постоянные составляющие входного сигнала. Усилители постоянного тока имеют много разновидностей (дифференциальные, операционные, усилители с преобразованием входного сигнала и др.). Поскольку такие устройства пропускают наряду с переменной составляющей еще и постоянную, то отдельные каскады должны быть связаны между собой либо непосредственно, либо через резисторы, но не через разделительные конденсаторы или трансформаторы, которые не пропускают постоянную составляющую. Основную проблему усилителей постоянного тока представляет дрейф нуля - отклонение напряжения на выходе усилителя от начального (нулевого) значения при отсутствии входного сигнала. Основной причиной этого явления являются температурная и временная нестабильность параметров активных элементов схемы усилителя, резисторов, а также источников питания.
17 Операционный усилитель (ОУ) является дифференциальным усилителем постоянного тока с двумя входами (инвертирующим и неинвертирующим) и одним выходом. Кроме них ОУ имеет выводы питания: положительного и отрицательного. Эти пять выводов имеются в почти любом ОУ и принципиально необходимы для его работы.
Существуют ОУ и не имеющие одного из входов. Либо неинвертирующего (инверторы), либо инвертирующего (повторители, буферы).
ОУ может иметь и дополнительные выводы для балансировки и частотной коррекции. Термин «дифференциальный» («different» переводится с английского как «разница», «различие», «разность») означает, что на выходной потенциал ОУ влияет исключительно разность потенциалов между его входами, независимо от их абсолютного значения и полярности.
Термин «постоянного тока» означает, что усиливает ОУ входные сигналы начиная от 0 Гц. Верхний диапазон частот (частотный диапазон), усиливаемых ОУ сигналов зависит от многих причин, таких, как частотные характеристики транзисторов, из которых он состоит, коэффициента усиления схемы, построенной с применением ОУ и т.п.
Столь большое сопротивление входов означает, что на входной сигнал они практически не влияют.
Поэтому с большой степенью приближения можно считать, что ток во входы ОУ не течет.
Изображают ОУ на принципиальных схемах - инвертирующий вход - символом «минус», а неинвертирующий - символом «плюс» внутри треугольника. Они указывают, как реагирует потенциал выхода на потенциалы, подаваемые на входы.
При обозначении ОУ на схемах инвертирующий
и неинвертирующий входы можно менять
местами, если так удобнее, однако,
традиционно инвертирующий вход
изображается вверху, а неинвертирующий
- внизу. Выводы питания всегда располагают
положительный вверху, а отрицательный
- внизу).
