Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по электротехнике и электронике.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.6 Mб
Скачать

11,Структура тиристора и процессы в нём, области применения тиристоров.

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости. Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

12,Интегральные микросхемы (имс): полупроводниковые и гибридные, аналоговые и цифровые

Интегральной микросхемой (ИМС)называют миниатюрное электронное устройство, выполняющее определенные функции преобразования и обработки сигналов и содержащее большое число активных и пассивных элементов (от нескольких сотен до нескольких десятков тысяч) в сравнительно небольшом корпусе.

Полупроводниковая микросхема – микросхема, все элементы и межэлементные соединения которой выполнены в объеме и на поверхности полупроводника.

Гибридная микросхема – микросхема, содержащая, кроме элементов, простые и сложные компоненты (например, кристаллы микросхемы полупроводниковых микросхем). Одним из видов гибридной микросхемы является многокристальная микросхема.

В зависимости от функционального назначения интегральные микросхемы делятся на аналоговые и цифровые. Аналоговые микросхемы предназначены для преобразования и обработки сигналов, изменяющихся по закону непрерывной функции. Частным случаем этих микросхем является микросхема с линейной характеристикой – линейная микросхема. С помощью цифровых микросхем преобразуются, обрабатываются сигналы, изменяющиеся по закону дискретной функции. Частным случаем цифровых микросхем являются логические микросхемы, выполняющие операции с двоичным кодом, которые описываются законами логической алгебры.

13. Однокаскадный усилитель на биполярном транзисторе по схеме с общим эмиттером.

В усилителях на биполярных транзисторах используется три схемы подключения транзистора: с общей, с общим эмиттером, с общим коллектором.

В схеме включения транзистора с общим эмиттером усилитель обеспечивает усиление по напряжению, по току, по мощности. Такой усилитель имеет средние значения входного и выходного сопротивления по сравнению со схемами включения с общей базой и общим коллектором.

Параметры транзистора в значительной степени зависят от температуры. Изменение температуры окружающей среды приводит к изменению рабочего режима транзистора в простой схеме усилителя при включении транзистора с общим эмиттером. Для стабилизации режима работы транзистора при изменении температуры используют схемы эмиттерной стабилизации режима работы транзистора.

На рисунках 5.14 и 5.15 приведены схемы однокаскадных усилителей на биполярных транзисторах n-p-n и p-n-p типов с эмиттерной температурной стабилизацией режима работы транзистора.

Проследим цепи, по которым протекают постоянные токи в усилителе по схеме рисунка 5.14. Постоянный ток делителя напряжения протекает по цепи: плюс источника питания, резисторы R1, R2, минус источника питания. Постоянный ток базы транзистора VT1 протекает по цепи: плюс источника питания, резистор R1, переход база-эмиттер транзистора VT1, резистор Rэ, минус источника питания. Постоянный ток коллектора транзистора VT1 протекает по цепи: плюс источника питания, резистор RК, выводы коллектор-эмиттер транзистора, резистор Rэ, минус источника питания. Биполярный транзистор в составе усилителя работает в режиме, когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор - в обратном. Поэтому постоянное напряжение на резисторе R2 будет равно сумме напряжения на переходе база-эмиттер транзистора VT1 и напряжения на резисторе Rэ: UR2=Uбэ+URэ. Отсюда следует, что постоянное напряжение на переходе база-эмиттер будет равно Uбэ= UR2 - URэ.