Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
VOPROSY2.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.46 Mб
Скачать

80. Теплота, работа, мощность. Определение, единицы измерения. 1-й закон термодинамики (через внутреннюю энергию и энтальпию). 2-й закон термодинамики. Энтропия.

Теплота (обозначается Q, также называется количество теплоты) — мера энергии, переходящей от одного тела к другому в процессе теплопередачи. В системе СИ единицей измерения теплоты является джоуль.

Q=cm(t2-t1 )  ,

где Q – количество теплоты,

m – масса тела,

(t_2-t_1 ) – разность между начальной и конечной температурами тела,

c – удельная теплоемкость вещества, находится из соответствующих таблиц.

Работой A, совершаемой постоянной силой F называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы  и перемещения:

A=Fscosa

Работа является скалярной величиной. Она может быть как положительной (0° ≤ α < 90°), так и отрицательной (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность N это физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа: 

N=A/T

В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с. 

Первый закон термодинамики гласит, что энергия не может быть создана или уничтожена. Таким образом, энергия системы (замкнутой) - постоянна. Тем не менее, энергия может быть передана от одного элемента системы другому. Рассмотрим замкнутую систему, изолированную от остальных.

Передача энергии между различными подсистемами в ней может быть описана как :

E1 = E2

Где E1 = начальная энергия

E2 = конечная энергия

Внутрення энергия включает :

    • Кинетическую энергию движения атомов

    • Потенциальную энергию хранящуюся в химических связях

    • Гравитационную энергию системы

Первый закон является основой для термодинамической науки и инженерного анализа.

Первый закон термодинамики помогает использовать ключевые концепции внутренней энергии (internal energy)тепла (heat), и работы системы (system work). которые широко используются в описании тепловых систем (heat engines).

    • Внутренняя энергия ( Internal Energy) - Внутренняя энергия определяется как энергия случайных, находящихся в неупорядченном движении молекул.

    • Тепло - Тепло может быть определено, как энергия, передаваемая от объекта с более высокой температурой к объекту с менее высокой температурой.

    • Работа - Когда работа совершается термодинамической системой (чаще всего это газ, который совершает работу), то работа совершенная газом при постоянном давлении определяется как : W = p dV, где W - работа, p - давление, а dV -изменение объема.

Энтропия.

Термин "энтропия" - величина, характеризующая степень неопределенности системы.

Однако, в термодинамике это понятие используется для определения связанной энергии системы. Энтропия определяет способность одной системы влиять на другую. Когда объекты пересекают нижнюю границу энергетического уровня необходимого для воздействия на окружающую среду, энтропия возрастает.Энтропия связана со вторым законом термодинамики.

Энтропия (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.

в символьном виде записывается, как

dS=(dQ)/T

где dS - изменение термодинамической системы

dQ - количество теплоты, сообщенное системе

T - термодинамическая температура системы

 Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна (закон неубывания энтропии). Для вселенной в целом энтропия возрастает.

  1. Калорический параметр «энтальпия» воды и водяного пара. Различные состояния воды и пара, их название, иллюстрация состояний в p-v, т-s и i-s в диаграммах. Таблицы воды и водяного пара для определения энтальпии.

Внутренняя энергия (u), энтальпия (h), энтропия (s) являются алорическими параметрами и рассчитываются по формулам через термические параметры p, v, T. Расчетные формулы могут быть получены на основании дифференциальных связей термодинамики:

Энтальпией, или теплосодержанием, называется функция состояния, представляющая собой сумму внутренней энергии и потенциальной энергии давления

h = u + pv,

где h – энтальпия; u – внутренняя энергия; p – давление; v – удельный объем.

Энтальпию можно представить также как количество теплоты, необходимое для нагревания единицы массы вещества при постоянном давлении, от состояния, принятого за начальное, до данного состояния

∆h = cpm ∆t,

где ∆h – изменение энтальпии; сpm –удельная теплоемкость; t –температура.

Энтальпия – важный параметр, дающий возможность просто и точно определить количество теплоты, участвующей в процессе парообразования, конденсации и других изобарных процессах.

Энтальпия является одной из важнейших калорических величин, необходимых для расчета любого энергетического или холодильного оборудования: котлов, турбин, компрессоров, различных теплообменников и т. п.

Энтальпия вещества может быть определена различными способами. В лабораторной работе производится определение энтальпии водяного пара с помощью адиабатического дросселирования.

Начальное состояние воды, находя­щейся под давлениемр и имеющей тем­пературу 0°С, изобразится на диаграм­ме точкой a0. При подводе теплоты к воде еетемпература постепенно повышается до тех пор, пока не достигнет температу­ры кипения tsсоответствующей данному давлению.

При дальнейшем подводе теплоты начинается кипение воды с сильным увеличением объема. В цилиндре теперь на­ходится двухфазная среда — смесь воды и пара, называемая влажным насы­щенным паром. По мере подвода теплоты количество жидкой фазы умень­шается, а паровой — растет. Температу­ра смеси при этом остается неизменной и равной ts, так как вся теплота расходу­ется на испарение жидкой фазы. Следовательно — процесс парообразования на этой стадии является изобарно-изотермическим. Наконец, последняя капля во­ды превращается в пар, и цилиндр ока­зывается заполненным только паром, ко­торый называется сухим насыщенным. Состояние его изображается точ­кой а".

Рисунок 1 - р-v-диаграмма водяного пара

Т - s-диаграмма водяного пара. Для исследования различных процессов с во­дяным паром кроме таблиц используется Т - s-диаграмма. Она строится путем переноса числовых данных таблиц водяного пара в Т - s-координаты.

Рисунок 2 - T - s-диаграмма водяного пара

 Откладывая на диаграмме для разных температур значения s' и s", получим нижнюю и верх­нюю пограничные кривые. Влево от ни­жней пограничной кривой располагается область жидкости, между пограничными кривыми — двухфазная область влажно­го насыщенного пара, вправо и вверх от верхней пограничной кривой — область перегретого пара.

В практических расчетах для определения пара h- s-диаграмма водяного пара. Если за независимые параметры, определяю­щие состояние рабочего тела, принять энтропию s и энтальпию h, то каждое состояние можно изобразить точкой на h-s-диаграмме.

На рисунке 6.3 изображена h, s-диаграм­ма для водяного пара, которая строится путем переноса числовых данных таблиц водяного пара в h-s-координаты.

За начало координат принято состоя­ние воды в тройной точке. Откладывая на диаграмме для различных давлений значения s' и h'' для воды при температу­ре, кипения, а также s" и h" для сухого насыщенного пара, получаем нижнюю и верхнюю пограничные кривые.

Рисунок 3 - h-s-диаграмма водяного пара

Для определения параметров воды и водяного пара пользуются таблицами. В них представлены параметры для четырех состояний: недогретой до температуры кипения воды, кипящей воды, сухого насыщенного пара и перегретого пара.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]