Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_33__33__33__vosstanovlen (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.67 Mб
Скачать

34)Угол между двумя плоскостями. Условие параллельности и перпендикулярности плоскостей.

Уравнение поверхности

Уравнение линии

Отметим без доказательства, что расстояние от точки до плоскости, заданной уравнением , находится по формуле

.

Поэтому координаты этих векторов пропорциональны, т.е.

- (6.12)

канонические уравнения прямой в пространстве, проходящей через точку .

Угол между двумя плоскостями

Найдем теперь угол между плоскостями и . Поскольку векторы и перпендикулярны данным плоскостям, то угол между ними равен двугранному углу между плоскостями. Поэтому

. (6.8)

Если выражение в (6.8) положительное, то - острый угол, если отрицательное, то оно соответствует тупому двугранному углу .

Условие параллельности и перпендикулярности двух плоскостей

Из формулы (6.8) получаем условие перпендикулярности двух плоскостей

. (6.9)

Условие параллельности двух плоскостей получается из условия коллинеарности векторов и :

. (6.10)

Если , то плоскости совпадают, так как их уравнения отличаются постоянным множителем.

35) Нормальное уравнение плоскости. Расстояние от точки до плоскости.

в векторной форме:

где - единичный вектор,  — расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки и противоположны).

Расстояние от точки до плоскости

Расстояние от точки до плоскости — это наименьшее из расстояний между этой точкой и точками плоскости. расстояние от точки до плоскости равно длине перпендикуляра, опущенного из этой точки на плоскость.

Расстояние от точки , до плоскости, заданной уравнением , вычисляется по формуле:

36) Общее уравнение прямой. Каноническое уравнение прямой.

Общее уравнение прямой

Если не параллельна , то есть не коллинеарен , то система уравнений

(3.42)

определяет прямую линию в пространстве.

Уравнения (3.42) называются общими уравнениями прямой в пространстве.

Каноническое уравнение прямой в пространстве

Отметим без доказательства, что расстояние от точки до плоскости, заданной уравнением , находится по формуле

.

Поэтому координаты этих векторов пропорциональны, т.е.

- (6.12)

канонические уравнения прямой в пространстве, проходящей через точку . Вектор - направляющий вектор прямой.

37) Параметрическое уравнение прямой

Обозначив общее значение дробей в уравнении буквой t, т.е. положив = t, получим

- (6.13)

параметрические уравнения прямой в пространстве, проходящей через точку в направлении вектора . Параметр .

38) Угол между прямыми в пространстве. Условие параллельности и перпендикулярности прямых в пространстве.

Углом между прямыми в пространстве называется угол между двумя пересекающимися прямыми, проходящими через произвольную точку пространства параллельно данным.

Из определения следует, что . Если , то

.

1) – условие перпендикулярности прямых.

2) – условие параллельности прямых в пространстве.

39) Расстояние от точки до прямой в пространстве. Условие параллельности и перпендикулярности прямых в пространстве.

Расстояние от точки до прямой в пространстве

Пусть прямая задана уравнением Ax+By+Cz+D=0

Условие параллельности и перпендикулярности прямых в пространстве.

Из формулы получаем условия параллельности

и перпендикулярности прямой и плоскости

40) Угол между прямой и плоскостью

Пусть - угол между прямой и плоскостью . Тогда угол между векторами (направляющий вектор прямой) и (нормальный вектор плоскости) равен . Поэтому

41)Числовая последовательностьЕсли каждому числу n из ряда 1,2,3..n поставлено в соответсвие вещественное число xn, то множество вещественных чисел x1,x2…xn наз-ся числовой последовательностью, а xn -общим членом последов-ти. Сокращено обоз-ся {xn}. Последовательность задана, если указано условие получения любого ее элемента. Пусть даны послед-ти {xn} ,{yn}. Тогда суммой их называется последовательность {xn+yn}, а разностью – {xn-yn}. Произведением {xn} на число m назовем послед-ть {mxn} Произведение {xn} на {yn} есть {xnyn}, а частное – {xn/yn},где все члены {yn} ≠0. Последов-ть {xn} называется ограниченной сверху (снизу), если существует такое число M(m), что любой элемент xn этой последовательности удовлетворяет неравенству xn≤M (xn≥M). Последовательность xn наз-ся бесконечно большой, если для любого A>0 существует такой номер N, что при n>N выполняется неравенство: |xn|>A. Последовательность xn наз-ся бесконечно малой, если для любого ε>0 существует такой номер N, что при n>N выполняется неравенство: |xn|< ε. Если xn-бесконечно большая посл-ть и все ее члены отличны от нуля, то послед-ть {1/xn} является бесконечно малой. Число а называется пределом последова­тельности {xn}, если для любого положительного числа ε су­ществует такой номер N, что при всех п > N выполняется неравенство

44)Сходимость последовательностей в пространстве Rn

Последовательность, имеющая предел, называется сходящейся. Если последовательность имеет своим пределом число а, то это записывается так: Последовательность, не имеющая предела, называется расходящейся

.45 Открытые и замкнутые множества в Rn. Предельные точки множества. Множество точек пространства Rn называется открытым, если вместе с каждой своей точкой оно содержит некоторую окрестность этой точки. Множество называется замкнутым, если оно включает все свои граничные (предельные) точки, т.е. точки, окрестности которых содержат точки как принадлежащие множеству, так и не принадлежащие ему. Пусть Х - множество в пространстве Rn. Точка р называется внутренней точкой множества Х, если существует шар В (р; r) ( р- центр, r-радиус), все точки которого принадлежат множеству Х. Точка р называется внешней точкой по отношению к Х, если существует шар В (р;r) ,ни одна точка которого не принадлежит множеству Х. Точка р называется граничной, если она не является ни внутренней, ни внешней. Множество Х называется открытым, если каждая его точка является внутренней. Пусть Х-множество в пространстве Rn. Точка р0 называется предельной для множества Х, если в любой окрестности точки р0 имеются точки множества Х, отличные от р0. При этом точка р0 может как принадлежать, так и не принадлежать множеству Х. Точка р0 называется изолированной точкой, если существует такой шар В (р0;ε), в котором никаких точек из Х, кроме точки р0 не имеется

46. Число е. Задача на вычисление сложных процентов.

Рассмотрим последовательность {хп}, общий член которой выражается формулой В курсе математического анализа доказывается, что эта последовательность монотонно возрастает и имеет предел. Этот предел называют числом е. Следовательно, по определе­нию Число е играет большую роль в математике.. Отметим , что число е является иррациональным; его приближенное значение равно е = 2,7182818...

47.Понятие функции

Пусть Х и Y — некоторые числовые множес­тва и пусть каждому элементу x Х по какому-либо закону f поставлен в соответствие один элемент у Y. Тогда го­ворят, что определена функциональная зависимость у от x по закону у = f(x). При этом x называют независимой перемен­ной (или аргументом), у — зависимой переменной, множество Х — областью определения (существования) функции, мно­жество Yобластью значений (изменения) функции. Сущест­вуют три основных способа задания функций: табличный, ана­литический и графический .1. Табличный способ широко используется в приложениях. В таких таблицах одну из переменных можно принять за независимое, тогда другие причины будут функциями от этого аргумента. 2. Аналитический способ. Этот способ состоит в зада­нии связи между аргументом и функцией в виде формул. 3. Графический способ. Здесь соответствие между аргу­ментом и функцией задается посредством графика. Область определения функции 1. Когда функция задана в аналитическом виде y = f (x) область ее определения такова: подкоренное выражение в кор­не четной степени не может быть отрицательным, знаменатель дроби = 0, выражение под знаком ло­гарифма должно быть только положительным и др. 2. Область определения функции бывает задана вместе с функцией f(x). Например, 1 ≤ х ≤ 4. Функция у = f(x) называется четной, если для любых значений аргу­мента из области ее определения выполнено равенство f(-x)=f(x) Функция у = f(x) называется нечетной, если: f(-x)=-f(x)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]