Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_33__33__33__vosstanovlen (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.67 Mб
Скачать

/1)Векторы в пространстве:

Вектор – направленный отрезок называется вектором ā

Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. |AB|=|a| - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.

Линейные операции над векторами обладают следующими свойствами:

1. а+b=b+а

2. (а +b) +с=а + (b +с),

3. λ1 • (λ2 •а) =λ1 •λ2 •а,

4. (λ1 +λ2) •а =λ1 •а +λ2 •а,

5. λ • (а +b) =λ •а+λ •b.

Операции с векторами:

  1. Сложение (результат - вектор)

Правило треугольника

Правило параллелограмма

Если вектора заданы в прямоугольной системе координат ā (а1,а2), в-(в12), то чтобы найти сумму надо сложить с-(а1122)

2) Арифметические векторы пространства R

Арифметическим вектором называется упорядоченная совокупность n чисел.

Обозначается x = (x1, x2, ..., xn);

числа x1, x2, ..., xn называются компонентами арифметического вектора.

Для арифметических векторов определены линейные операции — сложениеарифметических векторов и умножение вектора на число:

для любых x = (x1, x2, ..., xn), y = (y1, y2, ..., yn) и любого числа α справедливо:

x + y = (x1y1, x2 +y2, ..., xnyn); αx = (αx1, αx2, ..., αxn).

Множество арифметических векторов, для которых определены операции сложения и умножения на число называется пространством арифметических векторов Rn.

Вектор θ = (0, 0, ..., 0) называется нулевым вектором Rn,

а вектор −x = (−x1, −x2, ..., −xn) — противоположным вектором для вектора x вRn.

3)Скалярное произведение двух векторов в пространстве определяется аналогично случаю на плоскости:

.

Формула скалярного квадрата:

.

Справедлива формула, связывающая скалярное произведение векторов и проекции этих векторов:

. (1)

4)Линейная зависимость векторов. Действия над векторами в координатной форме

Векторы называются линейно независимыми, если равенство

справедливо тогда и только тогда, когда В противном случае эти векторы называются линейно зависимыми. Для того чтобы векторы были линейно зависимыми, необходимо и достаточно, чтобы хотя бы один из них можно было представить в виде линейной комбинации остальных.

5) Ортогональность векторов

Ортогональными (перпендикулярными) называются векторы, скалярное произведение которых равно нулю. Это определение применимо к любым пространствам с положительно определённым скалярным произведением. Важной особенностью понятия является его привязка к конкретному используемому скалярному произведению: при смене произведения ортогональные элементы могут стать неортогональными, и наоборот.

6)Базис пространства R

Базис векторного пространства и его размерности.

Базисом на плоскости называется совокупность фиксированной точки и 2х неколлинеарных векторов, проведенных к ней.

Базисом в пространстве наз. совокупность фиксированной точки в пространстве и 3х некомпланарных векторов.

Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве.

ОС=OA+OB, OA=x*i, OB=j*y, OC=xi+yj. Числа х,у называются координатами вектора ОС в данном базисе

(НЕОБЯЗАТЕЛЬНО)Упорядоченная тройка ненулевых линейно-независимых векторов образует базис в трехмерном пространстве. Любой вектор пространства единственным образом может быть разложен по базисным векторам, т.е. представлен в виде

где – координаты вектора в базисе (записывают: ).

В пространстве линейная независимость векторов равносильна их некомпланарности, т.е. любые три некомпланарных вектора, взятые в определенном порядке, образуют базис.

Пусть задана тройка некомпланарных векторов. Совместим начала этих векторов. Если кратчайший поворот вектора до направления вектора , наблюдаемый с конца вектора совершается против часовой стрелки, то тройка векторов называется правой. В противном случае – левой. Всюду далее рассматриваются правые тройки базисных векторов.

В случае, когда базисные векторы попарно перпендикулярны, система координат называется прямоугольной декартовой. Если добавить, кроме того, условие нормированности базисных векторов (т.е. их единичную длину), то такой базис называют ортонормированным и обозначают : Прямоугольные декартовы координаты вектора является его проекциями на вектора соответственно.

Если точка M имеет прямоугольные декартовы координаты x, y, z в системе координат с началом в точке O(0, 0, 0) и базисом , то соответствующий радиус-вектор

Если и , то

.

Линейные операции для векторов и в координатной форме и их скалярное произведение вычисляются по формулам:

; (4)

(5)

(6)

; (7)

. (8)

Направляющими косинусами вектора называются величины , где углы, которые образует вектор соответственно с осями . Их вычисляют по формулам:

(9)

Если единичный вектор, то .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]