- •Введение
- •1. Основные понятия теории вероятностей Операции над событиями
- •Частость наступления события
- •Свойства частости
- •Аксиоматика теории вероятности Построение вероятностного пространства
- •Теорема о продолжении меры
- •Определение вероятностного пространства
- •Классическое определение вероятности
- •Условная вероятность
- •Обоснование формулы условной вероятности в общем случае
- •Независимые события
- •Формула сложения вероятностей
- •Формула полной вероятности
- •Формула Байеса
- •Композиция испытаний
- •Композиция n испытаний
- •Композиция n независимых испытаний
- •Биномиальное распределение
- •Случайная величина Теорема Колмогорова
- •Дискретные случайные величины
- •Вероятностные характеристики дискретных случайных величин
- •Свойства математического ожидания
- •Производная функция
- •Первая модель распределения Пуассона
- •Вторая модель распределения Пуассона
- •Непрерывные случайные величины
- •Свойства плотности вероятности
- •Второе эквивалентное определение плотности вероятности
- •Вероятностные характеристики непрерывных случайных величин
- •Распределение Гаусса - нормальное
- •Функция Лапласа
- •Неравенство Чебышева
- •Многомерные случайные величины
- •Аксиоматика. Формальная вероятностная модель
- •Двумерные случайные величины
- •Двумерные непрерывные случайные величины
- •2. Основы математической статистики
- •2.1. Основные понятия математической статистики
- •Интервальная группировка и представление выборочных данных
- •Числовые характеристики распределения выборки
- •Точечные статистические оценки параметров распределения
- •2.1.5.3. "Исправленная" дисперсия и "исправленное" среднее квадратическое отклонение
- •Интервальные статистические оценки параметров распределения (доверительные интервалы)
- •2.1.6.3. Доверительный интервал для математического ожидания нормального распределения случайной величины
- •Основные законы распределения, используемые в статистических исследованиях
- •Асимметрия и эксцесс распределения
- •2.2. Основные методы математической статистики
- •2.2.1. Проверка статистических гипотез
- •Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий Колмогорова
- •2.2.2. Исследование статистических различий между двумя выборками
- •Список использованных источников
- •Содержание Справочные материалы
- •Значения функции
- •Значения нормально распределенной случайной величины z
- •На интервале [0,1]
- •Значения функции
- •Табличные (критические) значения функции распределения χ2
Частное образовательное учреждение высшего профессионального образования
САНКТ-ПЕТЕРБУРГСКИЙ ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ
С.В. Колесниченко
ТЕОРИЯ ВЕРОЯТНОСТЕЙ
И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА
Учебное пособие
Санкт-Петербург
2013
УДК 31
ББК 60.6
Рецензент:
доцент кафедры математического моделирования и эконометрии
Санкт-Петербургского государственного университета морского
и речного флота имени адмирала С.О. Макарова
кандидат военных наук, доцент Бурыкин А.А.
Колесниченко С.В.
Теория вероятностей и математическая статистика: Учебное пособие. - СПб.: СПбИЭУ, 2013. – 92 c.
Данное пособие содержит учебный материал по дисциплине «Теория вероятностей и математическая статистика» для студентов очной, очно-заочной и заочной форм обучения по направлениям «Менеджмент» и «Экономика».
Введение
Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.
Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.
Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.
Например: испытание - подбрасывание монеты.
Результатом испытания является событие. Событие бывает:
Достоверное (всегда происходит в результате испытания);
Невозможное (никогда не происходит);
Случайное (может произойти или не произойти в результате испытания).
Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.
Конкретный результат испытания называется элементарным событием.
В результате испытания происходят только элементарные события.
Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.
Например: Испытание - подбрасывание шестигранного кубика. Элементарное событие - выпадение грани с “1” или “2”.
Совокупность элементарных событий это пространство элементарных событий.
Сложным событием называется произвольное подмножество пространства элементарных событий.
Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному.
Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные.
Например: испытание - подбрасывание кубика. Элементарное событие - выпадение грани с номером “1”. Сложное событие - выпадение нечетной грани.
Введем следующие обозначения:
А - событие;
- элементы пространства ;
- пространство элементарных событий;
U - пространство элементарных событий как достоверное событие;
V - невозможное событие.
Иногда для удобства элементарные события будем обозначать Ei, Qi.
1. Основные понятия теории вероятностей Операции над событиями
1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1, ..., m.
2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1, ..., m.
3. Разностью событий A-B называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B.
4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.
Формулы де Моргана:
и
5. События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.
События A и B называются несовместными, если они не имеют общих элементарных событий.
C=AB=V
Тут V - пустое множество.
