Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_informatika_chast1.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
6.13 Mб
Скачать

2. Решение трансцендентных уравнений методом хорд.

Пусть так же, как в методе дихотомий, известны две точки A и B (A<B), для которых sign F(A)  sign F(B). В методе хорд (см. рис.3.4), в отличие от метода дихотомий, в ка­чес­тве очередного приближения P берется точка пересечения с осью абсцисс хорды, соединяющей точки (A,F(A)) и (B, F(B)).

Рис.3.4. Геометрическая интерпретация метода хорд

Уравнение прямой, проходящей через эти две точки запишем в виде: Y(x) = k x + c .

Коэффициенты k и c определяются из условий:

F(A) = k A + c ; F(B) = k B + c .

Решая эту систему из двух уравнений, получим:

; c = F(A) - k A .

Точка P пересечения этой прямой с осью ОX определяется из уравнения

kP + c = 0.

Решая его, окончательно получаем:

.

(3.4)

В методе хорд нельзя использовать в качестве критерия окончания вычислительного процесса неравенство (3.3), так как, как видно из рис.3.4, величина BA не стремится к нулю. В данном методе, как и в рассматриваемых ниже, вычислительный процесс следует прекращать при выполнении неравенства

,

(3.5)

т.е. если расстояние между двумя соседними приближениями к корню меньше заранее заданной величины .

Алгоритм метода хорд, следовательно, отличается от алгоритма метода дихотомий формулой вычисления приближения P и критерием окончания вычислительного процесса.

3. Решение трансцендентных уравнений методом касательных (метод Ньютона)

Графическая интерпретация метода представлена на рис.3.5. Предположим, что каким-либо способом найдено начальное приближение х0 к истинному корню. Например, при использовании отделения корней, в качестве х0 можно взять левую или правую границу промежутка, содержащего корень уравнения F(x) = 0, либо любую другую точку из этого промежутка. В точке х0 вычислим значение функции F(x), а также значение ее производной F (x). Следующее приближение к корню, т.е. точку х1 определим, как пересечение оси ОХ с касательной к кривой F(x) в точке х0:

Аналогичным образом, вычислив значения F(x) и F (x), в точке х1, можно получить приближение х2:

В общем случае вычислительный процесс метода Ньютона выражается формулой:

(3.6)

где каждое новое значение хk (k=1, 2, 3, …) будет располагаться все ближе к истинному корню х*., т.е. будет представлять собой все более точное приближение к решению уравнения F(x) = 0.

Рис.3.5. Метод Ньютона

Рис.3.6. Модифицированный метод Ньютона

Процесс уточнения корня по формуле (3.6) следует прекращать, когда выполнится условие , т.е. когда расстояние между двумя соседними приближениями станет меньше заранее за­данной точности .

Метод Ньютона обладает высокой скоростью сходимости. Обычно абсолютная точность решения 10-5 – 10-6 достигается за 4-5 итераций. Недостатком метода является необходимость вычисления на каждом шаге не только левой части F(x) уравнения, но и ее первой производной.

На практике иногда применяется так называемый модифицированный метод Ньютона, который отличается от метода Ньютона тем, что первая производная от F(x) вычисляется лишь один раз в точке х0. Вычислительный процесс модифицированного метода Ньютона описывается формулой:

(3.7)

а его геометрическая иллюстрация приведена на рис. 3.6.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]