- •1. Динамика полёта. Введение. Задачи курса.
- •2. Уравнения движения самолёта.
- •3. Системы осей координат. Основные параметры движения самолёта.
- •4. Взаимное положение систем координат. Геометрические и кинематические соотношения.
- •9. Исходные данные для расчета траекторий (аэродинамические характеристики самолета и характеристики двигателей)
- •10. Метод тяг. Расчет диапазона скоростей установившегося горизонтального полёта.
- •11. Анализ влияния параметров полёта на ход кривых потребных и располагаемых тяг.
- •12. Диаграмма потребных и располагаемых тяг. Режим полёта по диаграмме.
- •13. Первые и вторые режимы установившегося горизонтального полёта самолётов.
- •14. Характерные скорости горизонтального полёта.
- •15. Эксплуатационные ограничения скорости полёта.
- •16. Набор высоты. Уравнения движения. Полярная диаграмма скоростей набора.
- •18. Учет изменения кинетической энеpгии пpи набоpе высоты (самост.)
- •19. Энергетическая высота. Статический и динамический потолок самолета.
- •20. Планиpование самолета. Оптимальные pежимы. Поляpная диагpамма скоpостей планиpования.
- •21. Дальность полёта. Основные понятия. Система уравнений для расчёта дп.
- •25. Оптимальный по стоимости режим горизонтального полёта.
- •26. Расчет полной дальности полета для самолетов с трд
- •27. Учет ветра при расчете дп. Способы увеличения дп.
- •28. Маневренность самолета. Перегрузка. Связь перегрузки с характером траектории.
- •30. Разгон и торможение самолёта в горизонтальном полёте.
- •31. Манёвры самолёта в вертикальной плоскости. Уравнение движения. Методы расчёта.
- •32. Правильный вираж. График предельных виражей.
- •33. Расчет взлетной дистанции самолета.
- •34. Расчет посадочной дистанции самолета.
- •35.Прерванный и продолжительный взлет
- •36.Методы уменьшения взлетной и посадочной дистанции.
- •37. Устойчивость и управляемость. Основные понятия.
- •38. Статическая и динамическая устойчивость.
- •39. Разделение движения самолета на продольное и боковое.
- •40. Влияние вращения самолета на продольные силы и моменты.
- •Понятия пpодольной статическая устойчивости самолета по пеpегpузке и по скоpости.
- •Продольный момент самолета без горизонтального оперения (го) в установившемся прямолинейном полете. Понятие аэродинамического фокуса.
- •43. Пpодольный момент го в установившемся пpямолинейном полете.
- •44. Пpодольная балансиpовка самолета. Пpавило пpодольного "V". Балансиpовочные кpивые.
- •45.Определение диапазона допустимых центровок
- •46.Потери связанные с балансировкой .Преимущества и недостатки статически неустойчивого самолета
- •47. Шарнирный момент органов управления. Усилия на ручке управления .Способы уменьшения шарнирного момента
- •48. Свободное продольное возмущенное движение самолета .Короткопериодическое и длиннопериодическое продольное возмущенное движение
- •49. Условия устойчивости самолета в короткопериодическом движении.
- •50. Условия устойчивости самолета в длиннопериодическом движении.
- •51. Влияние констpуктивных паpаметpов самолета и pежима полета на пpодольную устойчивость и упpавляемость.
- •52. Боковая устойчивость. Понятие попеpечной и флюгеpной устойчивости.
- •53) Момент крена самолета в установившемся полете
- •54) Момент рысканья самолета в установившемся полете
- •55) Влияние вращения самолета на боковые моменты
- •56) Боковая балансировка самолета и усилия на рычагах управления
- •59.Поведение самолета при несимметричной тяге
- •60. Влияние конструктивных параметров и режима полета на боковую устойчивость и управляемость самолета
- •61. Взаимодействие Продольного и бокового движения.
- •62. Применение средств автоматики в системе управления.
- •63. Перспективные разработки в области динамики полёта.
47. Шарнирный момент органов управления. Усилия на ручке управления .Способы уменьшения шарнирного момента
Шарнирные моменты возникают на рулях ( стабилизатор, руль высоты, элероны, руль направления) при их отклонении. Отклонение рулей сопровождается возникновением аэродинамических сил, равнодействующая которых не совпадает с осью вращения руля. Шарнирный момент возрастает с увеличением отклонения руля от его равновесного положения, площади и хорды руля и с Корсетного напора.
Усилия на рычагах управления
Усилия на рычагах управления в системах прямого управления зависят от аэродинамических сил на рулевых поверхностях. Так, в горизонтальном сбалансированном полете (рис. 12.4) летчик должен приложить к ручке 1 усилие Pл, чтобы удержать в определенном положении руль высоты 2, стремящийся под действием аэродинамической нагрузки, равнодействующая которой Rр приложена в центре давления руля, повернуться относительно оси 3 вращения руля. Момент Мш = Rра аэродинамических сил руля относительно оси вращения называется шарнирным моментом руля. Соотношение сил Pл и Rp будет зависеть от соотношения плеч рычагов и качалок в трассе управления. В общем случае из условия равенства работы летчика (на перемещение рычага управления) и работы аэродинамических сил (при повороте рулевой поверхности на угол dδ)
|
Рис. 12.4. К объяснению усилий на рычагах управления |
Отсюда
где
коэффициент кинематической передачи от руля к командному рычагу, показывающий соотношение между элементарными угловыми перемещениями руля dδ и потребными для этого элементарными линейными перемещениями ручки dx.
Из приведенной формулы ясно, что усилия на рычагах управления будут зависеть от аэродинамических сил на рулевой поверхности, т. е. будут отслеживать изменение скорости, высоты полета и перегрузки, поскольку определенному отклонению руля (и, как следствие, определенной силе на рулевой поверхности) будет соответствовать определенная перегрузка . При проектировании системы управления для обеспечения приемлемых для летчика перемещений и усилий на рычагах управления можно изменять шарнирный момент руля за счет выбора положения оси вращения руля относительно центра давления руля.
Часть рулевой поверхности находящуюся перед осью вращения рулевой поверхности, принято называть аэродинамическим компенсатором, поскольку аэродинамические силы на этой части руля создают относительно оси вращения руля момент, который уменьшает (компенсирует) общий шарнирный момент Мш рулевой поверхности. Для облегчения работы летчика (уменьшения усилий на рычагах управления в длительном установившемся полете) применяется расположенная на рулевой поверхности 1 (рис. 12.7) специальная аэродинамическая поверхность 2 - триммер (англ.trimmer - приводящий в порядок). Нажатием кнопки триммирования на ручке (штурвале) управления летчик подает управляющий электрический сигнал (УС) на электромеханизм 3, который сообщает поступательное движение тяге 4 и отклоняет триммер 2.
|
Рис. 12.7. К объяснению принципа работы триммера Начало формы Конец формы |
Основными средствами снижения усилий на командных рычагах являются устройства, позволяющие уменьшать коэффициент шарнирного момента mш. Для этого используется энергия набегающего потока воздуха, поэтому такие средства принято называть аэродинамической компенсацией рулей. К аэродинамической компенсации относятся: роговая, осевая, внутренняя компенсации, а также простой или пружинный сервокомпенсатор. Первые три вида компенсации используют общий принцип: часть поверхности руля располагается спереди от оси вращения руля и создает относительно этой оси момент, уменьшающий шарнирный момент руля.
роговая; на конце руля часть его площади в виде «рога» располагается спереди от оси шарниров, что обеспечивает создание момента обратного знака по отношению к основному шарнирному
осевая; часть площади руля по всему размаху располагается спереди от оси шарниров (ось шарниров смещается назад), что уменьшает шарнирный момент,
в
нутренняя;
обычно используется на элеронах и
представляет собой пластины, прикрепленные
к носку элерона спереди, которые связаны
гибкой перегородкой со стенками камеры
внутри крыла. При отклонении элерона
в камере создается разница давлений
над и под пластинами, которая уменьшает
шарнирный момент ,
с
ервокомпенсация;
в хвостовой части руля шарнирно
подвешивается небольшая поверхность,
которая тягой связывается с неподвижной
точкой на крыле или оперении. Эта тяга
обеспечивает автоматическое отклонение
сервокомпенсатора в сторону,
противоположную отклонению руля.
Аэродинамические силы на сервокомпенсаторе
уменьшают шарнирный момент руля .
