Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экзаменационные вопросы - 2008 год

.doc
Скачиваний:
24
Добавлен:
14.06.2014
Размер:
76.29 Кб
Скачать

Экзаменационные вопросы по Физике – 2008 год

  1. Какие процессы называются колебательными? Гармонические колебания. Уравнение и график гармонических колебании. Частота колебаний. Укажите на графике амплитуду, период колебания, начальную фазу.

  2. Затухающие колебания. Уравнение и график затухающих колебаний. Вынужденные колебания. Резонанс: при каких условиях он возникает?

  3. Какие процессы называют механическими волнами? Уравнение и график плоской гармонической волны. Характеристики волны: скорость распространения, длина, интенсивность.

  4. Звук, его природа. Физические характеристики звуковой волны. Характеристики слухового ощущения и их связь с физическими характеристиками волны.

  5. Что такое громкость звука. Зависимость громкости от интенсивности и частоты звуковой волны. Закон Вебера – Фехнера. От чего зависит порог слышимости звука, кривая порога слышимости, кривые равной громкости. Аудиометрия.

  6. Ультразвук (УЗ), его физическая природа. Отражение ультразвука на границе раздела сред, коэффициент отражения. Закон поглощения ультразвука в однородной среде. График зависимости интенсивности УЗ от толщины поглощающего слоя.

  7. Ультразвука в медицинской диагностике. Принцип эхолокации. Эффект Доплера, его применение в УЗ исследованиях.

  8. Источники электрического и магнитного полей. Основные положения теории Максвелла об электромагнитном поле.

  9. Электромагнитные (ЭМ) волны, уравнения и график плоской ЭМ волны. Характеристики ЭМ волны (скорость распространения ЭМ волны в вакууме и в средах, длина волны, интенсивность).

  10. Квантовая механика как метод познания микромира. Корпускулярно-волновой дуализм. Энергия фотона. Длина волны де Бройля. Соотношение неопределенностей в квантовой механике.

  11. Законы теплового излучения Кирхгофа, Стефана – Больцмана, Вина. Спектр излучения абсолютно черного тела.

  12. Энергетические уровни атомов и молекул. Квантовые переходы в атомах и молекулах. Атомные и молекулярные спектры поглощения и излучения.

  13. Явление поглощения света в веществе. Закон Бугера (вывод), график. Закон Бугера–Ламберта–Бера. Оптическая плотность вещества. Принцип работы спектрофотометра.

  14. Оптические квантовые генераторы (лазеры). Инверсная заселенность уровней. Индуцированное излучение. Свойства лазерного излучения, его применение в медицине.

  15. Рентгеновское излучение, его физическая природа. Механизмы характеристического и тормозного рентгеновского излучения.

  16. Устройство рентгеновской трубки. Коротковолновая граница спектра тормозного рентгеновского излучения. Регулировка жесткости и интенсивности рентгеновского излучения.

  17. Закон ослабления интенсивности рентгеновского излучения, график. Линейный коэффициент ослабления. Физические основы получения рентгеновских снимков в медицине.

  18. Принцип рентгеновский компьютерной томографии. Рентгеновский томограф, его устройство. Основные отличия рентгеновской томограммы от рентгеновского снимка.

  19. Явление радиоактивности.  и -распады, -излучение, их физическая природа.

  20. Основной закон радиоактивного распада (вывод), график. Период полураспада. Активность радиоактивного препарата. Искусственная радиоактивность. Метод меченых атомов, его применение в медицине.

  21. Дозиметрия ионизирующего излучения. Поглощенная, экспозиционная и эквивалентная (биологическая) дозы, соотношения между ними. Единицы доз в СИ и внесистемные единицы. Мощность дозы.

  22. Связь мощности экспозиционной дозы с активностью радиоактивного препарата. Естественный радиоактивный фон Земли, его нарушения. Проникающая и ионизирующая способности , , -излучений. Защита от радиоактивных излучений.

  23. Шкала электромагнитных волн. Свойства ЭМ волн в различных диапазонах. Механизмы излучения ЭМ волн в радио, ИК, видимом, УФ, рентгеновском и гамма диапазонах.

  24. Материя и ее виды. Переход одного вида материи в другой Реакции аннигиляции и рождения пары.

  25. Липидный бислой, его строение, его толщина. Жидкостно-мозаичная модель мембраны. Основные функции биологических мембран. Диффузия липидных молекул в мембранах. Люминесцентный метод излучения подвижности молекул в мембране (флуоресцентные метки и зонды). Частота перескоков молекул.

  26. Электронная микроскопия, принцип устройства, предел разрешения электронного микроскопа. Рентгеноструктурный анализ, формула Вульфа - Брэггов. Какие характеристики биологических объектов изучают с помощью этих методов?

  27. Электрохимический потенциал, формула, физический смысл. Плотность потока вещества. Активный и пассивный перенос веществ через биологическую мембрану. Принципиальные различия между ними.

  28. Пассивный транспорт заряженных частиц: Уравнение Теорелла, уравнение Нернста – Планка. Что такое градиент концентрации и градиент электрического потенциала?

  29. Пассивный транспорт не заряженных частиц: Закон Фика, осмос, фильтрация. Облегченная диффузия, ее свойства.

  30. Активный транспорт веществ. Опыт Уссинга.

  31. Что такое мембранная разность потенциалов? Схема регистрации мембранной разности потенциалов с помощью микроэлектрода. Формула Нернста для расчета равновесной мембранной разности потенциалов. Уравнение Гольдмана.

  32. Как возникает биопотенциал покоя? Напишите уравнение Нернста – Планка, объясните роль градиентов концентрации и электрического потенциала при формировании потенциала покоя.

  33. Схема регистрации потенциала действия в аксоне. График потенциала действия. Относительные проницаемости мембраны для ионов К и Na в покое и при возбуждении.

  34. Уравнение для тока мембраны при возбуждении (уравнение Ходжкина – Хаксли). Метод фиксации потенциала. Суммарный, калиевый и натриевый ионные токи в процессе возбуждения мембраны, их графики. Для чего используют блокаторы ионных потоков через мембрану?

  35. Токи одиночных натриевых каналов. Структура натриевых каналов, их свойства: дискретность и взаимно независимость действия, селективность, время открытого состояния канала.

  36. Механизм распространения потенциалов действия вдоль нервного волокна, локальные токи. Почему по неразветвленному аксону возбуждение распространяется только в одну сторону?

  37. Соотношение ионов Na+, Ca+ и K+ внутри и снаружи кардиомиоцита. Потенциал действия кардиомиоцита, график. Состояния каналов и направления потоков ионов Na+, Ca+ и K+ в различные фазы потенциала действия кардиомиоцита.

  38. Какую функцию выполняют ионные насосы в мембранах? Схема действия K–Na–насоса. Сопряженные процессы в ионных насосах.

  39. Как регистрируют электрокардиограмму? Основные положения теории Эйнтховена. Объясните Генез ЭКГ на базе дипольной модели.

  40. Электроэнцефалография. Использование теоремы Фурье для спектрального анализа ЭЭГ. Метод картирование электрической активности мозга при анализе ЭЭГ.

  41. Что такое среды (АС), каковы их свойства. Автоволны, особенности распространения автоволн в АС. Тау-модель, длина волны возбуждения. Примеры АС и автоволн в организме.

  42. Распространение автоволн в неоднородных по рефрактерности активных средах. Трансформация ритма, условия её возникновения.

  43. Возникновение спиральных волн возбуждения в активных средах. Ревербератор, его свойства. Ревербератор - источник нарушения ритма сердца.

  44. Биофизика мышечного сокращения. Структура мышцы, саркомер. Основные положения модели скользящих нитей.

  45. Изометрический и изотонический режимы сокращения мышцы, графики одиночных сокращений. Уравнение Хилла.

  46. Электромеханическое сопряжение в мышцах. Активные и пассивные потоки ионов при сокращении и расслаблении мышцы

  47. Вязкость жидкости, ее физическая природа, формула Ньютона. Ньютоновские и неньютоновские жидкости. Реологические свойства крови.

  48. Гемодинамические параметры: давление, объемная и линейная скорости кровотока. Закон Пуазейля. Ламинарное и турбулентное течения.

  49. Пульсовая волна, её характеристики: длина волны, скорость распространения. Изменение давления крови в аорте в течение диастолы (Модель Франка)

  50. Собственные физические поля организма человека: электрические, магнитные, электромагнитные, акустические. Физическая природа этих полей, их основные характеристики. Источники этих полей в организме. Методы картирования электрических, магнитных, электромагнитных полей организма человека.

  51. Источники магнитных полей организма. Измерение индукции магнитного поля органов, градиометр. Магнитокардиография, магнитоэнцефалография.

  52. Физические поля организма человека: спектр теплового излучения организма. Поток теплового излучения в ИК и радио диапазонах. Использование теплового излучения организма для диагностики заболеваний.

  53. Моделирование как метод познания. Виды моделей. Адекватность, границы применимости моделей. Приведите примеры использования моделей при изучении биологических систем. Моделирование роста биологической популяции при различных условиях функционирования системы.

  54. Модель “хищник - жертва”. Фазовый портрет системы. Применение этой модели в медицине.

  55. Фармакокинетическая модель изменения концентрации лекарственного препарата при различных способах его введения в организм: инъекция, инфузия, сочетание инъекции и инфузии.

  56. Организм как открытая термодинамическая система. Уравнение Пригожина. Стационарное состояние термодинамической системы.