Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ1 (1).rtf
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.13 Mб
Скачать

17Вплив легуючих елементів на властивості сталі

Всі легуючі елементи підвищують міцність.

Легуючі елементи, які утворюють карбіди, подрібнюють зерно при кристалізації.

Корозійної стійкості, жаростійкості (окалиностійкості), жароміцності, теплостійкості легуючі елементи надають лише при значній кількості в сталях (хром 8-13%, нікель 8-12%, вольфрам, молібден понад 5%).Окремі хімічні елементи:

Хром — при кількості більше ніж 13% надає корозійної стійкості, понад 5% — жаростійкості.

Нікель — одночасно з міцністю підвищує ударну в'язкість, а також жароміцність (понад 8%).

Кремній — в ресорно-пружинних сталях надає пружності, а у високотемпературних сталях — жаростійкості.Марганець — сприяє росту аустенітного зерна при перегріві.

Вольфрам і молібден — утворюють важкорозчинні карбіди і за значної кількості (понад 5%) надають сталі теплостійкості.Титан і ванадій — переважно для подрібнення зерна і стримання його росту при нагріванні.В корозійно-стійких сталях титан запобігає міжкристалітній корозії, алюміній підвищує твердість при азотуванні, а також жаростійкість

18

Леговані сталі маркують за допомогою літер і цифр. Легуючі елементи позначаються літерами: Н — нікель, Х — хром, К — кобальт, М — молібден, Г — марганець, Д — мідь, Р — бор, Б — ніобій, С — кремній, В — вольфрам, Т — титан, Ф — ванадій, П — фосфор, А — азот.

Перші дві або три цифри на початку маркування показують середній вміст вуглецю в сотих частках відсотка, а якщо одна цифра — то в десятих частках. Цифри, які стоять після літер, вказують на середній вміст легуючого елемента, що позначається цією літерою у відсотках. Якщо вуглецю або легуючого елемента міститься близько 1%, то цифри не ставляться. Буква А на кінці маркування позначає, що дана сталь належить до високоякісних.

19Конструкційні — застосовують для виготовлення деталей машин, при цьому в цих сталях міститься хрому, марганцю, кремнію до 2%, нікелю до 4%. Приклади конструкційних сталей:Низьковуглецеві, які піддаються цементації: 15Х, 18ХГТ, 12ХНЗА, 25ХНР.Середньовуглецеві, які піддаються поліпшенню:Ресорно-пружинні: Високоміцні: Підшипникові: Будівельні:

20Інструментальні сталі і сплави застосовують для виготовлення різних виробничих інструментів (різальних, вимірювальних і ударно - штамнов

Інструментальні сталі застосовують для різного інструменту. Вони повинні мати високу твердість та зносостійкість.

Сталі для різального інструменту:

Низької теплостійкості (до 250°C): ХГ, 9ХС, ХВГ, ХВСГ.

Підвищеної до 600°C теплостійкості (швидкорізальні): Р9, Р6М5, Р9К5, Р14Ф4.

Сталі для вимірювального інструменту. Ці сталі повинні мати високу твердість, зносостійкість і зберігати постійність розмірів. Для виготовлення плиток, калібрів, шаблонів застосовують високовуглецеві хромисті сталі, наприклад, ХВГ, ХВ5. Найчастіше такі сталі після гартування обробляють холодом (для повного перетворення залишкового аустеніту в мартенсит).

Сталі для штампів:

Холодного деформування середніх розмірів: 9ХС, Х6ВФ.

Холодного деформування різних розмірів, особливо високоточних: Х12М, Х12Ф.

Гарячого деформування середніх розмірів: 5ХНТ, 5ХНВ.

Гарячого деформування великих розмірів важконавантажених: 4Х2В5МФ, 5Х3В3МФС.

21

Спеціальні сталі (сталі з особливими властивостями) застосовують для роботи в агресивних середовищах, при високих температурах, ударних навантаженнях тощо.

Корозійно-стійкі сталі мають високу корозійну стійкість у хімічно активних газових і рідких середовищах. Це досягається за рахунок великого вмісту хрому (понад 13%). Титан вводять в сталь для запобігання міжкристалітної корозії. Корозійно-стійкі сталі поділяються на:

Хромисті 10Х13, 40Х13, 10Х25 (феритна).

Хромонікелеві (аустенітні): 12Х18Н9, 10Х18Н10Т.

Жаростійкі і жароміцні сталі мають здатність сталі чинити опір газовій корозії за підвищених температур та зберігати достатню міцність за високих температур.

Жаростійкість забезпечується легуванням сталей хромом, кремнієм та алюмінієм, які утворюють захисні плівки (Fe, Cr)2О3, SiO2, Al2O3. До жаростійких сталей відносяться леговані сталі 25Х6С10, 40Х9С2, 15Х25Т, 12Х18Н10Т.

Жароміцність досягається легуванням тугоплавкими хімічними елементами (хром, нікель, молібден). Як правило, жароміцні сталі мають і жаростійкість. Це сталі 15Х2МФС, 15Х11МФ, 40Х10С2М, 10Х18Н10Т, 40Х15Н7Г7Ф2МС.

Зносостійка (аустенітна) сталь 110Г13Л (сталь Гадфільда) використовується для виготовлення деталей, які працюють в умовах абразивного тертя й високого тиску та ударів (наприклад, траки гусеничних машин, деталі подрібнювачів, хрестовини залізничних і трамвайних колій, черпаки землерийних машин). Характерна особливість марганцевого аустеніту — здатність сильно наклепуватись і перетворюватися в мартенсит, що призводить до підвищення твердості й опору зношення.

22Цемента́ція ста́лі — вид хіміко-термічної обробки, що полягає у поверхневому дифузійному насиченні маловуглецевої сталі вуглецем з метою підвищення твердості та зносостійкості. Цементація з наступною термічною обробкою одночасно підвищують і границю витривалості.

Цементації піддають маловуглецеві (з вмістом вуглецю зазвичай до 0,2%) і леговані сталі. Процес у разі використання твердого карбюризатора проводиться при температурах 900...950 °С, при газовій цементації (газоподібний карбюризатор) — при 850...900 °С.

Після цементації вироби піддають термообробці (гартуванню), що приводить до утворення мартенситної фази у поверхневому шарі виробу (гартування на мартенсит) з наступним відпуском для зняття внутрішніх напружень.

23Азотува́ння (часом нітрування, але не плутати з нітруванням в органічній хімії) — вид хіміко-термічної обробки, котрий полягає у насиченні азотом поверхневого шару виробів із легованої сталі. Легуючі елементи (алюміній, молібден, ванадій, хром) утворюють з азотом стійкі хімічні сполуки — нітриди, які надають виробам великої твердості (1200 за Віккерсом).

24Ціанува́ння — хіміко-термічна обробка, при якій поверхня насичується одночасно вуглецем та азотомЦіанування застосовують для підвищення зносостійкості і корозійної стійкості деталей. Процес ціанування в порівнянні з процесом цементації вимагає набагато менше часу для отримання шару заданої товщини, характеризується значно меншими деформаціями і викривленням деталей складної форми.

Основним недоліком ціанування є отруйність ціанистих солей.

В порівнянні з цементацією високотемпературне ціанування відбувається з більшою швидкістю, приводить до меншої деформації деталей, забезпечує більшу твердість і зносостійкість.

25Відпа́люванням ста́лі називається вид термічної обробки сталі, що полягає у нагріванні матеріалу до певної температури, витримування і наступне, як правило, повільне охолодження (в печі) з метою одержання рівноважної структури. Основними видами відпалювання сталі є: відпал першого роду; відпал другого роду; нормалізаційний відпал (нормалізація).

26

Нормалізація сталі — вид термічної обробки сталі, що полягає у нагріванні доевтектоїдних сталей до температури вище за А3 (див. діаграму), а заевтектоїдних — вище за Аcm на 50-60° з наступним охолодженням на повітрі. При нормалізації відбувається перекристалізація сталі, котра усуває крупнозернисту структуру, отриману при литві чи куванні. Цей вид термообробки часто замінює відпал для низьковуглецевих сталей (0,2...0,3% С), а для середньовуглецевих сталей (0,3...0,5% С) — гартування і високий відпуск.

27

Ві́дпуск ста́лей — операція термічної обробки, яка полягає в нагріванні загартованих сталей до температур, що не перевищують температури утворення аустеніту (Ас1), витримуванні при цих температурах для перетворення мартенситу гартування у рівноважніші структури та наступного охолодження.

На відміну від продуктів розкладання переохолодженого аустеніту (сорбіт, троостит), які мають пластинчасту форму цементиту, продукти розкладання мартенситу під час нагрівання (сорбіт відпуску, троостит відпуску) мають зернисту форму цементиту, тому за інших рівних умов вони характеризуються більшими ударною в’язкістю й границею витривалості в умовах руйнування від втоми.

28Гатува́ння — це зміцнювальна термічна обробка, яка полягає в нагріві сталі до температури вище критичних точок, витримці і подальшому охолодженні зі швидкістю більше критичної.

Мета гартування — одержати мартенситну структуру з рівномірним розподілом вуглецю і підвищити твердість і міцність сталі.Головні параметри процесу гартування:температура нагріву;час витримки;середовище, в якомунагрівають виріб;швидкість охолодження.режим відпуску.

29

Діаграма стану залізовуглецевих сплавів

Компонентами залізовуглецевих сплавів є два хімічні еле­менти — залізо та вуглець.

Залізо — сріблясто-білий метал з температурою плавлення 1539 °С і густиною 7,87-103 кг/м3. Йому властива добра пластич­ність, невисока міцність і низька твердість.

Вуглець може перебувати в сплавах у цементиті Fе3С, у твер­дих розчинах проникнення, а також у вигляді графіту.

До фаз системи залізо-вуглець належать: рідкий розчин Р, ферит Ф, аустеніт А і цементит Ц.

Рідкий розчин Р — однорідна рідина, що складається із заліза та вуглецю. Рідкий розчин існує як окрема фаза над лінією ліквідує, а між лініями ліквідус та солідус він перебуває у рівновазі з кристалічною фазою (феритом, аустенітом або це­ментитом).

Ферит Ф — твердий розчин проникнення вуглецю в α-залі­зі. Максимальна розчинність вуглецю у фериті становить 0,02 %. Така незначна розчин­ність пояснюється малими розмірами порожнин в об'ємноцентрованому кубі заліза проти розмірів атома вуглецю.Аустеніт А — твердий розчин проникнення вуглецю в γ-залізі з максимальною розчинністю 2,14 % С. Атом вуглецю може перебувати в центрі ГЦК. Аустеніт не магнітний, досить пластичний і має твердість за Брінеллем в межах 170 ... 220.Цементит Ц — хімічна сполука заліза з вуглецем Fе3С,

яка відповідає концентрації вуглецю 6,67 %. Твердість цементиту дуже висока (800 НВ), його температура плавлення становить 1260 °С.

Перліт П – механічна суміш (евтектоїд) ферриту та цементиту, яка утворюється при евтектоїдному розпаді аустеніту (0,8% С).

Ледебурит Л (4,3% С) – механічна суміш (евтектика) аустеніту або перліту та цементиту. Нижче 727 оС аустеніт перетворюється у перліт, при цьому утворюється суміш перліту та цементиту.

30Термі́чна обро́бка — технологічний процес, сутність якого полягає у зміні структури металів і сплавів при нагріванні, витримці та охолодженні, згідно зі спеціальним режимом, і тим самим, у зміні властивостей останніх.

Наприклад в основі термічної обробки сталей лежить перекристалізація аустеніту при охолодженні. Перекристалізація може відбутися дифузійним або бездифузійним способами. У залежності від переохолодження аустеніт може перетворюватися у різні структури з різними властивостями.

31Під загартовуваністюрозуміють здатність сталей отримувати максимальну твердість в процесі гартування. Головним чинником, який визначає загартовуваність, є вміст вуглецю в сталі.

Під прогартовуваністюрозуміють здатність сталі утворювати загартований шар на певну глибину. Як правило, структура цього шару – мартенсит. Прогартовуваність визначається хімічним складом сталей, критичною швидкістю охолодження і розміром деталей. В результаті гартування може утворюватись скрізна або нескрізна прогартовуваність. Це пояснюється зміною критичної швидкості охолодження по перетину деталі. Поверхневий об’єсм деталі при гартуванні завжди охолоджується із швидкістю більшою, ніж критична і отримує мартенситну структуру.